Volume 8, 2024

Table of contents

List of Reviewers

Neuroscience

USING MACHINE LEARNING FOR EARLY ALZHEIMER'S DETECTION IN COGNITIVE NEUROSCIENCE

Orrù Graziella, Piarulli Andrea, Ciro Conversano, Angelo Gemignani

DOI: 10.21175/RadProc.2024.01

Received: 2 AUG 2024, Received revised: 3 OCT 2024, Accepted: 10 OCT 2024, Published online: 2 NOV 2024

Alzheimer's disease (AD) is a leading cause of dementia, with early detection crucial for effective intervention. Machine learning (ML) has emerged as a promising tool for identifying AD-related biomarkers in neuroimaging and cognitive assessments. We reviewed literature from peer-reviewed journals and conference proceedings using PubMed, focusing on studies employing ML for early AD detection through neuroimaging and cognitive data. ML techniques show significant promise in early AD detection. Key studies demonstrate high accuracy in distinguishing between AD, mild cognitive impairment (MCI), and healthy controls. Notable, methods include MRI- based biomarkers, computer-aided diagnosis systems, and various ML algorithms. ML techniques can enhance early AD detection, leading to improved patient outcomes. Despite the promising results, this study did not conduct a systematic review, and further research is needed to address data availability and refine feature selection for better accuracy and generalizability.
  1. R. Brookmeyer, C. H. Kawas, N. Abdallah, A. Paganini-Hill, R. C. Kim, M. M. Corrada, “Impact of interventions to reduce Alzheimer's disease pathology on the prevalence of dementia in the oldest-old”, Alzheimer's & Dement., vol. 12, no. 3, pp. 225-232, 2016.
    https://doi.org/10.1016/j.jalz.2016.01.004
  2. G. Orrù, S. Sampietro, S. Catanzaro, A. Girardi, M. Najjar, V. Giantin, G Sergi, E. Manzato, G. Enzi, E.M. Inelmen, A Coin, “Serial position effect in a free recall task: differences between probable dementia of Alzheimer type (PDAT), vascular (VaD) and mixed etiology dementia (MED)”, Archives of Gerontology and Geriatrics, vol. 49, pp. 207-210, 2009.
    https://doi.org/10.1016/j.archger.2009.09.030
  3. A. Coin, M. Najjar, S. Catanzaro, G. Orru, S. Sampietro, G. Sergi, E. Manzato, E. Perissinotto, G. Rinaldi, S. Sarti, A. Imoscopi, E. Ruggiero, A. Girardi, “A retrospective pilot study on the development of cognitive, behavioral and functional disorders in a sample of patients with early dementia of Alzheimer type”, Archives of Gerontology and Geriatrics, vol. 49, pp. 35-38, 2009.
    https://doi.org/10.1212/wnl.34.7.939
  4. B. Dubois, A. Padovani, P. Scheltens, A. Rossi, G. Dell’Agnello, “Timely diagnosis for Alzheimer’s disease: a literature review on benefits and challenges”, J. Alzheimers Dis., vol. 49, no. 3, pp. 617-631, 2016.
    https://doi.org/10.3233/JAD-150692
  5. S. Vieira, W. H. Pinaya, A. Mechelli, “Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications”, Neurosci. Biobehav. Rev., vol. 74, pp. 58-75, 2017.
    https://doi.org/10.1016/j.neubiorev.2017.01.002
  6. D. B. Dwyer, P. Falkai, N. Koutsouleris, “Machine learning approaches for clinical psychology and psychiatry”, Annu. Rev. Clin. Psychol., vol. 14, pp. 91-118, 2018.
    https://doi.org/10.1146/annurev-clinpsy-032816- 045037
  7. R. Ferrucci, F. Mameli, F. Ruggiero, M. Reitano, M. Miccoli, A. Gemignani, C. Conversano, M. Dini, S. Zago, S. Piacentini, B. Poletti, A. Priori, G. Orrù, “Alternate fluency in Parkinson’s disease: A machine learning analysis”, PLOS ONE, vol. 17, no. 3, pp. e0265803-1-12, 2022.
    https://doi.org/10.1371/journal.pone.0265803
  8. G. Pace, G. Orrù, M. Monaro, F. Gnoato, R. Vitaliani, K. B. Boone, A. Gemignani, G. Sartori, “Malingering detection of cognitive impairment with the B test is boosted using machine learning”, Front. Psychol., vol. 10, pp. 1650-1-8, 2019.
    https://doi.org/10.3389/fpsyg.2019.01650
  9. A.B. Shatte, D.M. Hutchinson, S.J. Teague, “Machine learning in mental health: a scoping review of methods and applications”, Psychol. Med., vol. 49, no. 9, pp. 1426-1448, 2019.
    https://doi.org/10.1017/S0033291719000151
  10. A. Ferrarese, G. Sartori, G. Orrù, A. C. Frigo, F. Pelizzaro, P. Burra, M. Senzolo, “Machine learning in liver transplantation: a tool for some unsolved questions?”, Transplant Int., vol. 34, no. 3, pp. 398-411, 2021.
    https://doi.org/10.1111/tri.13818
  11. L. Nanni , M. Interlenghi, S. Brahnam, C. Salvatore, S. Papa, R. Nemni, I. Castiglioni and Alzheimer's Disease Neuroimaging Initiative, "Comparison of transfer learning and conventional machine learning applied to structural brain MRI for the early diagnosis and prognosis of Alzheimer's disease," Front. Neurol., vol. 11, p. 576194, 2020.
    https://doi.org/10.3389/fneur.2020.576194
  12. I. Bazarbekov, A. Razaque, M. Ipalakova, J. Yoo, Z. Assipova, A. Almisreb, “A review of artificial intelligence methods for Alzheimer's disease diagnosis: Insights from neuroimaging to sensor data analysis”, Biomed. Signal Process. Control, vol. 92, pp. 106023, 2024.
    https://doi.org/10.1016/j.bspc.2024.106023
  13. G. Orrù, M. Monaro, C. Conversano, A. Gemignani, G. Sartori, “Machine learning in psychometrics and psychological research”, Front. Psychol., vol. 10, pp. 2970-1-10, 2020.
    https://doi.org/10.3389/fpsyg.2019.02970
  14. E. Moradi, A. Pepe, C. Gaser, H. Huttunen, J. Tohka, and Alzheimer's Disease Neuroimaging Initiative, “Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects”, NeuroImage, vol. 104, pp. 398-412, 2015.
    https://doi.org/10.1016/j.neuroimage.2014.10.002
  15. L. Khedher, J. Ramírez, J. M. Górriz, A. Brahim, F. Segovia, and Alzheimer’s Disease Neuroimaging Initiative, “Early diagnosis of Alzheimer’s disease based on partial least squares, principal component analysis and support vector machine using segmented MRI images”, Neurocomputing, vol. 151, pp. 139-150, 2015.
    https://doi.org/10.1016/j.neucom.2014.09.072
  16. K.M.M. Uddin, M.J. Alam, M.A. Uddin, S. Aryal, “A novel approach utilizing machine learning for the early diagnosis of Alzheimer's disease”, Biomed. Mater. Devices, vol. 1, no. 2, pp. 882-898, 2023.
    https://doi.org/10.1007/s44174-023-00078-9
  17. C. Kavitha, V. Mani, S. R. Srividhya, O. I. Khalaf, C. A. Tavera Romero, “Early-stage Alzheimer's disease prediction using machine learning models”, Front. Public Health, vol. 10, p. 853294, 2022.
    https://doi.org/10.3389/fpubh.2022.853294
  18. C. Salvatore, A. Cerasa, P. Battista, M. C. Gilardi, A. Quattrone, I. Castiglioni, and Alzheimer's Disease Neuroimaging Initiative, “Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: a machine learning approach”, Front. Neurosci., vol. 9, p. 307, 2015.
    https://doi.org/10.3389/fnins.2015.00307
  19. J. Venugopalan, L. Tong, H. R. Hassanzadeh, M.D. Wang, “Multimodal deep learning models for early detection of Alzheimer’s disease stage”, Sci. Rep., vol. 11, no. 1, p. 3254, 2021.
    https://doi.org/10.1038/s41598-020-74399-w
  20. P. Chlap, et al., "A review of medical image data augmentation techniques for deep learning applications", J. Med. Imaging Radiat. Oncol, vol. 65, no. 5, pp. 545-563, 2021.
    https://doi:10.1111/1754-9485.13261
  21. R. Zebari, A. Abdulazeez, D. Zeebaree, D. Zebari, J. Saeed, “A comprehensive review of dimensionality reduction techniques for feature selection and feature extraction”, JASTT, vol. 1, no. 1, pp. 56-70, 2020.
    https://doi.org/10.38094/jastt1224
Orrù Graziella, Piarulli Andrea, Ciro Conversano, Angelo Gemignani, "Using machine learning for early Alzheimer's detection in cognitive neuroscience", RAD Conf. Proc., vol. 8, 2024, pp. 1-6; http://doi.org/10.21175/RadProc.2024.01
Radioecology

GROSS BETA-RADIOACTIVITY OF LEAVES OF THUJA PYRAMIDALIS IN CONDITIONS OF HYDROPONICS AND SOIL IN ARARAT VALLEY AND DILIJAN FOREST EXPERIMENTAL STATION

L.M. Ghalachyan, Kh.S. Mayrapetyan, A.H. Tadevosyan, A.A. Ghahramanyan, S.A. Eloyan, A.S. Yeghiazaryan, A.A. Hakobjanyan

DOI: 10.21175/RadProc.2024.02

Received: 13 SEPR 2024, Received revised: 3 NOV 2024, Accepted: 12 NOV 2024, Published online: 14 NOV 2024

Armenia is affected by the ecological disaster connected with the forest area reduction. It is a mountainous country with a dry subtropical climate and it has a nuclear power plant (NPP), located in the Ararat Valley. All these are not only the basis of the ecological disaster but also make it deeper. For its prevention, it is necessary to restore and expand green zones, and forests. The use of decorative trees and shrubs with the ability to filter the air from radionuclides (RN) is extremely important in green construction. In recent years, the decorative coniferous tree Thuja occidentalis “Pyramidalis” is one of the most demanded landscaping trees in Armenia. The characteristics of gross β-radioactivity of Thuja pyramidalis leaves were studied under outdoor hydroponic and soil cultivation conditions in the territory of the Institute of Hydroponics Problems (IHP) in the Ararat Valley (a zone with a radius of 30 km from the Armenian NPP) (ANPP) and the Dilijan Forest Experiment Station (DFES) (a zone with a radius of 90 km from the ANPP). This has a practical significance because the use of radio-ecologically favorable tree species and shrubs in green construction will have an important ecological significance. The gross β-radioactivity of the leaf samples was determined by radio-chemical methods using a small background UMF-1500 radiometer using sensor CTC-5. According to results, regardless of the growth zone, hydroponic trees exceeded soil ones in the amount of β-radiating technogenic and natural RN by 1.2-1.3 times. Leaves of the Thuja pyramidalis grown in the IHP territory exceeded those grown in DFES in gross β-radioactivity: in hydroponics - 1.6 times, in soil - 1.7 times. Thuja pyramidalis as a radio-ecologically beneficial tree species is proposed to be used for the creation of green zones. This will have important ecological significance as it will reduce the movement of RN in the biosphere.
  1. A. Mikhaylov, N. Moiseev, K. Aleshin, T. Burkhardt, “Global climate change and greenhouse effect”, Entrepreneurship and Sustainability Issues, vol. 7, no. 4, 2897, 2020.
    http://doi.org/10.9770/jesi.2020.7.4(21)
  2. Annual 2023 Global Climate Report. National Centers for Environmental Information Retrieved from: https://www.ncei.noaa.gov/access/monitoring/monthly- report/global/202313
    Retrieved on: Jan. 20, 2024
  3. 3. V. Knapp, D. Pevec, Promises and limitations of nuclear fission energy in combating climate change, Energy Policy, vol. 120, pp. 94-99, 2018.
    https://doi.org/10.1016/j.enpol.2018.05.027
  4. B.F. Myasoedov, S.N. Kalmykov, “Nuclear power industry and the environment”, Mendeleev Communications, vol. 25, no. 5, pp. 319-328, 2015.
    https://doi.org/10.1016/j.mencom.2015.09.001
  5. D. Todorovic, D. Popović, J. Ajtic, J. Nikolic, “Trace Elements and Radionuclides ( 137 Cs, 40 K, 210 Pb and 7 Be) in Urban Air Monitored by Moss and Tree Leaves”, Environmental Science and Pollution Research, vol. 20, pp. 525–532, 2013.
    http://doi.org/10.1007/s11356-012-0940-y
  6. 6. Г.Т. Бозшатаева, А.И. Касымбекова, Г.С. Оспанова, Г.К. Турабаева, М.Б. Кыдыралиева, “Использование биоиндикаторов для оценки состояния атмосферного воздуха”, Меж. ж. прикладных и фундаментальных исследований, т. 12, no. 2, стр. 302-306, 2017 (G.T. Bozshataeva, A.I. Kasymbekova, G.S. Ospanova, G.K. Turabaeva, M.B. Kydyralieva, “Use of bioindicators to assess the state of atmospheric air”, International Journal of Applied and Fundamental Research, vol. 12, no. 2, pp. 302-306, 2017.).
    Retrieved from: https://applied- research.ru/ru/article/view?id=12039
    Retrieved on: March 03, 2024
  7. О.Л. Воскресенская, А.В. Леухин, В.С. Воскресенский, А.Р. Сазонов, “Накопление и распределение радионуклидов в органах туи западной, произрастающей в условиях городской среды”, Вестник Марийского государственного университета, т. 8, cтр. 39-42, 2012 (O.L. Voskresenskaya, A.V. Leukhin, V.S. Voskresensky, A.R. Sazonov, “Accumulation and distribution of radionuclides in the organs of western thuja growing in urban environments”, Bulletin of the Mari State University, vol. 8, pp. 39-42, 2012.).
    Retrieved from: https://cyberleninka.ru/article/n/nakoplenie-i- raspredelenie-radionuklidov-v-organah-tui- zapadnoy-proizrastayuschey-v-usloviyah-gorodskoy- sredy/viewer
    Retrieved on: May 10, 2024
  8. А.Н. Переволоцкий, Е.А. Гончаров, Т.В. Переволоцкая, “К вопросу о моделировании распределения радионуклидов в лесных биогеоценозах”, Радиационная биология. Радиоэкология, том 6, cтр. 655-663, 2016 (A.N. Perevolotsky, E.A. Goncharov, T.V. Perevolotskaya, “On the issue of modeling the distribution of radionuclides in forest biogeocenoses”, Radiation biology. Radioecology, vol. 6, pp. 655-663, 2016.).
    Retrieved from: https://ecoradmod.narod.ru/rus/publication/perevolockij 16rbrehles_modeli.pdf
    Retrieved on: Feb 10, 2024
  9. P. Wang, S. Yu, H. Zou, X. Lou, H. Ren, L. Zhou, et al., “Levels, sources, variations, and human health risk assessment of 90 Sr and 137 Cs in water and food around Sanmen Nuclear Power Plant (China) from 2011 to 2020”, Front. Public Health, vol. 11, pp. 1136623-1-13, 2023.
    http://doi.org/10.3389/fpubh.2023.1136623
  10. C. Park, D. Lee, H.K. Heo, S. Ahn, “Increasing of Urban Radiation due to Climate Change and Reduction Strategy using Vegetation”, In AGU Fall Meeting Abstracts, vol. 2017, pp. PA21A-0336, 2017.
    Retrieved from: https://ui.adsabs.harvard.edu/abs/2017AGUFMPA21A03 36P/abstract
    Retrieved on: June 15, 2023
  11. I.A. Vlad, M. Vlad, I. Vlad, “Researches concerning the influence of cultivation and technology systems upon growth and development of Thuja occidentalis L. Pyramidalis and Thuja occidentalis L. Globosa cultivars”, Analele Universităţii din Oradea, Fascicula Protecţia Mediului, vol. 24, 119-130, 2015
    Retrieved from: http://protmed.uoradea.ro/facultate/publicatii/protectia_ mediului/2015A/hort/05.%20Vlad%20Ioana.pdf
    Retrieved on: July 30, 2023
  12. Ս.Ա. Կտրակյան, Երևանի կանաչ տնկարկների դենդրոֆլորայի հարստացման և գեղազարդության բարձրացման խնդիրները: Հայաստանի կենսաբանական հանդես, հատոր 72, համար 1-2, էջ 42-47, 2020 (S.A. Ktrakyan, “Tasks for enriching dendroflora and enhancing the decorativity of green stands in Yerevan”, Biological Journal of Armenia, vol. 72, no. 1-2, pp. 42-47, 2020.)
    Retrieved from: https://arar.sci.am/dlibra/publication/284232/edition/26 0887/content
    Retrieved on: Oct 25, 2023
  13. G. Tepanosyan, V. Muradyan, A. Hovsepyan, G. Pinigin, A. Medvedev, S. Asmaryan, “Studying spatial-temporal changes and relationship of land cover and surface Urban Heat Island derived through remote sensing in Yerevan”, Armenia. Building and Environment, vol. 187, pp. 107390. 2021. http://doi.org/10.1016/j.buildenv.2020.107390
  14. K. Mayrapetyan, A. Hakobjanyan, L. Ghalachyan, A. Karapetyan, A. Ghahramanyan, S. Eloyan, A. Yeghiazaryan, A. Tadevosyan, “Hydroponical growth and radionuclide accumulation specificities of Thuja occidentalis in Ararat Valley and Dilijan forest zone conditions”, RAD Conference Proceedings, vol. 6, pp. 38–42, 2022.
    http://doi.org/10.21175/RadProc.2022.07
  15. Լ. Վալեսյան, “Հայաստանի ազգային ատլաս”. Երևան, «Գեոդեզիայի և քարտեզագրության կենտրոն» ՊՈԱԿ, հատոր Ա, 2007, 230 էջ (L. Valesyan, National Atlas of Armenia. Editor, Yerevan, vol. A, 2007, 232 pages). Retrieved from: https://online.fliphtml5.com/qgxio/flkz/#p=1
    Retrieved on: Jan 12, 2022
  16. Г.Б. Бабаян, “Почвы и природные условия Дилижанкой лесной агрохимической станции (ДИЛАС),” Сообщения института Агрохимических проблем и гидропоники, том 21, стр. 21–25, 1980 (G.B. Babayan, “Soils and natural conditions of the Dilijan Forest Agrochemical Station (DILAS),” Communications of the Institute of Agrochemical Problems and Hydroponics, vol. 21, pp. 21–25, 1980).
    Retrieved from: https://arar.sci.am/dlibra/publication/282592/edition/25 9388/content
    Retrieved on: Feb. 20, 2022
  17. A. Vardanyan, L. Ghalachyan, A. Tadevosyan, V. Baghdasaryan, A. Stepanyan, M. Daryadar, “The phytochemical study of Eleutherococcus senticosus (Rupr. & Maxim) leaves in hydroponics and soil culture”, Functional Foods in Health and Disease, vol. 13, no. 11, pp. 574-583, 2023.
    https://www.doi.org/10.31989/ffhd.v13i11.1183
  18. Государственный стандарт ССС (ГОСТ 194113- 89). Государственный комитет СССП по стандартам, Москва (State Standard ССС (ГОСТ 194113-89). Gosudarstvenny committee SSSP on standards, Moscow.). Retrieved on: Feb. 25, 2024.
  19. Ф.И. Павлоцкая, “Методы определения 90Sr и других изотопов”, Физико-химические методы исследования почв, Москва, Россия: Изд-во “Наука”, 1966, 126 стр. (F. I. Pavlotskaya, “Methods of determining 90 Sr and other isotopes”, in Physiological-chemical methods of soil study, Moscow, Russia, 1966, 126 p.).
  20. L.M. Ghalachyan, A.H. Tadevosyan, “Acumulation of Artificial Radionuclides in Ecosystem of Irrigation Water-Soil-Herb in Anthropogenic Zones of Armenian NPP”, Bulletin, State Agrarian University of Armenia, vol. 4, pp. 5- 8, 2016.
    Retrieved from:
    https://library.anau.am/images/stories/grqer/Izwestiya/4 _2016/
    Retrieved on: Jan. 11, 2024
  21. O.A. Belyaeva, K.I. Pyuskyulyan, N.E. Movsisyan, L.V. Sahakyan, A.K. Saghatelyan, “Radioecological studies in Armenia: a review”, National Academy of Sciences of RA., Electronic Journal of natural sciences, Ecology, vol. 34, no.1, pp. 34-40, 2020.
    Retrieved from: https://www.globalgeochemicalbaselines.eu
    Retrieved on: June. 16, 2023
  22. Сельскохозяйственная радиоэкология, Под. ред. Р.М. Алексахина, Н.А. Корнеева. М., Экология, 400 стр., 1992 (Agricultural radioecology, Ed. by R.M. Aleksakhin, N.A. Korneev. Moscow, Ecology, 400 pp., 1992.).
  23. А.И. Щеглов, О.Б. Цветнова, “Биологический круговорот 137Cs и 40К в дубравах и агрофитоценозах на темно-серых лесных почвах Тульской области России”, Радиационная биология. Радиоэкология, том 57, no. 2, стр. 201- 209, 2017 (A.I. Shcheglov, O.B. Tsvetnova, “Biological cycle of 137Cs and 40K in oak groves and agrophytocenoses on dark gray forest soils of the Tula region of Russia”, Radiation biology. Radioecology, vol. 57, no. 2, pp. 201-209, 2017).
    https://doi.org/10.7868/S0869803117020138
  24. Y. Gu, “Analysis and Evaluation on Radioactivity of Common Building Materials”, Chemical Engineering Transactions, vol. 62, pp. 127-132, 2017.
    https://doi.org/10.3303/CET1762022
  25. M. Trautmannsheimer, P. Schramel, R. Winkler, K. Bunzl, “Chemical fractionation of some natural radionuclides in a soil contaminated by slags”, Environmental Science & Technology, vol. 32, no. 2, pp. 238-243, 1998.
    http://doi.org/10.1021/es970446o
  26. A. Hakobjanyan, A. Karapetyan, A. Ghahramanyan, A. Yeghiazaryan, A. Gasparyan, K. Mayrapetyan, Photosynthetic abilities and essential oil content of hydroponic and soil Thuja occidentalis, Bioactive Compounds in Health and Disease, vol. 7(10), pp. 550-557, 2024.
    https://doi.org/10.31989/bchd.v7i10.1457
  27. S. Jan, Z. Rashid, T.A. Ahngar, S. Iqbal, M.A. Naikoo, S. Majeed, T.A. Bhat, R. Gul, I. Nazir, “Hydroponics–A review”, International Journal of Current Microbiology and Applied Sciences, vol. 9, no. 8, 1779-1787, 2020.
    https://doi.org/10.20546/ijcmas.2020.908.206
L.M. Ghalachyan, Kh.S. Mayrapetyan, A.H. Tadevosyan, A.A. Ghahramanyan, S.A. Eloyan, A.S. Yeghiazaryan, A.A. Hakobjanyan, "Gross beta-radioactivity of leaves of thuja pyramidalis in conditions of hydroponics and soil in Ararat Valley and Dilijan forest experimental station", RAD Conf. Proc., vol. 8, 2024, pp. 7-11; https://doi.org/10.21175/RadProc.2024.02
Other topic

THEORETICAL ANALYSIS OF DELAMINATION IN A VISCOELASTIC MULTILAYERED BAR BUILT- UP AT BOTH ENDS

Victor Rizov

DOI: 10.21175/RadProc.2024.03

Received: 6 AUG 2024, Received revised: 29 SEP 2024, Accepted: 7 OCT 2024, Published online: 24 NOV 2024

This paper reports the results of a theoretical consideration of the delamination problem in a multilayered load- bearing bar of rectangular cross-section loaded in time-dependent torsion. The bar is built-up at both ends. Besides, the bar is supported by a spring and a dashpot. The bar has two portions with different thickness. There is a delamination near the border between the two portions of the bar. The viscoelastic behavior of the bar is treated by a model that is subjected to shear stresses which vary with time. The torsion moments in the bar portions are determined by analyzing the time-dependent equilibrium with taking into account the effects of the spring and dashpot supports. Then these torsion moments are used to find-out the time-dependent strain energy in the bar. The strain energy release rate (SERR) for the delamination is obtained by differentiating the time-dependent strain energy with respect to the delamination area. The time-dependent compliance of the bar is analyzed to verify the SERR. Effects of the external loading, locations of the spring and dashpot supports, bar geometry, material properties and other parameters on the SERR are evaluated and discussed. The results of the analysis are presented in forms of various graphs illustrating the change of the SERR.
  1. Y. Tokovyy , C. -C. Ma, “Three-Dimensional Temperature and Thermal Stress Analysis of an Inhomogeneous Layer”, J. Therm. Stresses, vol. 1, no. 3, pp. 790–808, 2013.
    https://doi.org/10.1080/01495739.2013.787853
  2. Y. Tokovyy, C.-C. Ma, “Axisymmetric Stresses in an Elastic Radially Inhomogeneous Cylinder Under Length-Varying Loadings”, ASME J. Appl. Mech., vol. 83, no. 11, pp. 111007, 2016.
    https://doi.org/10.1115/1.4034459
  3. L. Tokova, A. Yasinskyy, C.-C. Ma, “Effect of the layer inhomogeneity on the distribution of stresses and displacements in an elastic multilayer cylinder”, Acta Mech., vol. 228, no. 8, pp. 2865-2877, 2017.
    http://doi.org/10.1007/s00707-015-1519-8
  4. I. Dahan, U. Admon, J. Sarei, B. Yahav, M. Amar, N. Frage, M.P. Dariel, “Functionally graded Ti-TiC multilayers: the effect of a graded profile on adhesion to substrate”, Mater. Sci. Forum, vol. 308-311, no. 2, pp. 923-929, 1999.
    https://doi.org/10.4028/www.scientific.net/msf.308- 311.923
  5. N. Dolgov, “Determination of Stresses in a Two-Layer Coating”, Strength Mater., vol. 37, no. 2, pp. 422-431, 2005.
    https://doi.org/10.1007/s11223-005-0053-7
  6. J.-H. Yu, S. Guo, D.A. Gillard, “Bimaterial curvature measurements for CTE of adhesives: optimization and modelling”, J. Adhes. Sci. Technol., vol. 17, no. 2, pp. 149- 164, 2003.
    https://doi.org/10.1163/156856103762301970
  7. J.S. Kim, K.W. Paik, S.H. Oh, “The Multilayer-Modified Stoney’s Formula for Laminated Polymer Composites on a Silicon Substrate”, J. Appl. Phys., vol. 86, pp. 5474–5479, 1999.
    https://doi.org/10.1063/1.371548
  8. S-N. Nguyen, J. Lee, M. Cho, “Efficient higher-order zig- zag theory for viscoelastic laminated composite platesˮ, Int. J. Solids Struct., vol. 62, no. 2, pp. 174-185, 2015.
    http://doi.org/10.1016/j.ijsolstr.2015.02.027
  9. S.-N. Nguyen, J. Lee, J-W. Han, M. Cho, “A coupled hygrothermo-mechanical viscoelastic analysis of multilayered composite plates for long-term creep behaviorsˮ, Compos. Struct., vol. 242, 112030, 2020.
    https://doi.org/10.1016/j.compstruct.2020.112030
  10. L.B. Freund, “The stress distribution and curvature of a general compositionally graded semiconductor layer”, J. Cryst. Growth, vol. 132, no. 1-2, pp. 341-344, 1995.
    https://doi.org/10.1016/0022-0248(93)90280-A
  11. J.J. Moore, “Self-propagating high-temperature synthesis of functionally graded PVD targets with a ceramic working layer of TiB-TiN or TiSi-Tin”, J. Mater. Synth. Process., vol. 10, pp. 319-330, 2002.
    https://doi.org/10.1023/A:1023881718671
  12. I. Markov, D. Dinev, “Theoretical and experimental investigation of a beam strengthened by bonded composite strip”, Reports of International Scientific Conference VSU’2005, pp. 123-131, 2005.
  13. A. Attia, A.T. Berrabah, F. Bourada, et al., “Free Vibration Analysis of Thick Laminated Composite Shells Using Analytical and Finite Element Method”, J. Vib. Eng. Technol., 2024.
    https://doi.org/10.1007/s42417-024-01322-2
  14. F.Y. Addou, F. Bourada, A. Tounsi et al., “Effect of porosity distribution on flexural and free vibrational behaviors of laminated composite shell using a novel sinusoidal HSDT”, Archiv. Civ. Mech. Eng, vol. 24, no. 102, 2024.
    https://doi.org/10.1007/s43452-024-00894-w
  15. F. Bounouara, M. Sadoun, M.M. Selim Saleh, A. Chikh, A.A. Bousahla, A. Kaci, F. Bourada, A. Tounsi, A. Tounsi, “Effect of visco-Pasternak foundation on thermo- mechanical bending response of anisotropic thick laminated composite plates”, Steel and Composite Structures, vol. 47, pp. 693-707, 2023.
    https://doi.org/10.12989/scs.2023.47.6.693
  16. S.R. Choi, J.W. Hutchinson, A.G. Evans, “Delamination of multilayer thermal barrier coatings”, Mech. Mater., vol. 31, no. 2, pp. 431–447, 1999.
    https://doi.org/10.1016/S0167-6636(99)00016-2
  17. N.E. Dowling, “Mechanical behaviour of materialsˮ, Pearson, 2011.
  18. J.W. Hutchinson, Z. Suo, “Mixed mode cracking in layered materials”, Adv. Appl. Mech., vol. 64, pp. 804- 810, 1992.
    https://doi.org/10.1016/S0065-2156(08)70164-9
  19. multilayered functionally graded non-linear elastic circular shafts under combined loads”, Frattura ed Integrità Strutturale, vol. 46, no. 12, pp. 158–177, 2018.
    https://doi.org/10.3221/IGF-ESIS.46.16
  20. V. Rizov, H. Altenbach, “Multi-Layered Non-Linear Viscoelastic Beams Subjected to Torsion at a Constant Speed: A Delamination Analysis”, Eng. Trans., vol. 70, no. 1, pp. 53-66, 2022.
    https://doi.org/10.24423/EngTrans.1720.20220303
  21. V. Rizov, “Inhomogeneous beam structures of rectangular cross-section loaded in torsion: a delamination study with considering creep”, Procedia Struct. Integrity, vol. 41, pp. 94–102, 2022.
    https://doi.org/10.1016/j.prostr.2022.05.012
  22. V.I. Rizov, “Analysis of two lengthwise cracks in a viscoelastic inhomogeneous beamstructure”, Engineering Transactions, vol. 68, pp. 397-415, 2020.
    https://doi.org/10.24423/EngTrans.1214.20201125
  23. K.S. Chobanian, Stresses in combined elastic solids, Science, 1997.
Victor Rizov, "Theoretical analysis of delamination in a viscoelastic multilayered bar built-up at both ends", RAD Conf. Proc., vol. 8, 2024, pp. 12-15; https://doi.org/10.21175/RadProc.2024.03
Other topic

FUNCTIONALLY GRADED FRAMES UNDER SUPPORT DISPLACEMENTS: A LONGITUDINAL FRACTURE ANALYSIS WITH REFRENCE TO NON-LINEAR RELAXATION

Victor Rizov

DOI: 10.21175/RadProc.2024.04

Received: 6 AUG 2024, Received revised: 29 SEP 2024, Accepted: 3 OCT 2024, Published online: 24 NOV 2024

The current study deals with the problem of longitudinal fracture in functionally graded load-caring frame structures under support displacements in the conditions of non-linear relaxation behavior. The latter is taken in account by applying a non-linear stress-strain-time constitutive law that holds for viscoelastic engineering materials subjected to constant strains. The frame under consideration is functionally graded along its thickness (thus, the material properties vary continuously along the thickness of the frame members). The frame is statically undetermined. Therefore, the support displacements induce stresses in the frame. These stresses lead to longitudinal fracture in the frame that is analyzed theoretically. The time-dependent strain energy release rate (SERR) for a longitudinal crack in the frame is derived by considering the energy balance under non-linear relaxation. The time-dependent complementary strain energy in the frame is analyzed for verifying the solution of the SERR due to support displacements. Various graphs are plotted to illustrate the effects of different factors (magnitude of support displacements, time, etc.) on the longitudinal fracture behavior. Analyzing the combined effects of static indeterminacy, support displacements and non-linear relaxation behavior on longitudinal fracture of functionally graded frame structures is the main novelty and the added value of the current paper.
  1. E.K. Njim, M. Al-Waily, S.H. Bakhy, “A Critical Review of Recent Research of Free Vibration and Stability of Functionally Graded Materials of Sandwich Plate”, IOP Conf. Ser.: Mater. Sci. Eng. (INTCSET 2020), vol. 1094, pp. 012081-1-30, 2021.
    https://doi.org/10.1088/1757-899X/1094/1/012081
  2. I.M. El-Galy, B.I. Saleh, M.H. Ahmed, “Functionally graded materials classifications and development trends from industrial point of view”, SN Appl. Sci., vol. 1, pp. 1378-1-22, 2019.
    https://doi.org/10.1007/s42452-019-1413-4
  3. F.F. Calim, Y.C. Cuma, “Forced vibration analysis of viscoelastic helical rods with varying cross-section and functionally graded material”, Mech. Based Des. Struct. Mach., vol. 51, no. 7, pp. 3620-3631, 2023.
    https://doi.org/ 10.1080/15397734.2021.1931307
  4. T. Hirai, L. Chen, “Recent and prospective development of functionally graded materials in Japan”, Mater Sci. Forum, vol. 308-311, pp. 509-514, 1999.
    https://doi.org/10.4028/www.scientific.net/MSF.308- 311.509
  5. R.M. Mahamood, E.T. Akinlabi, Introduction to Functionally Graded Materials. In: Functionally Graded Materials. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham, 2017.
    https://doi.org/10.1007/978-3-319-53756-6_1
  6. Y. Miyamoto, W.A. Kaysser, B.H. Rabin, A. Kawasaki, R.G. Ford, Functionally Graded Materials: Design, Processing and Applications, Kluwer Academic Publishers, Dordrecht/London/Boston, 1999.
  7. M. Chitour, A. Bouhadra, F. Bourada, B. Mamen, A.A. Bousahla, A. Tounsi, A. Tounsi, M.A. Salem, K.M. Khedher, “Stability analysis of imperfect FG sandwich plates containing metallic foam cores under various boundary conditions”, Structures, vol. 61, p. 10621, 2024. https://doi.org/10.1016/j.istruc.2024.106021
  8. D.E. Lafi, A. Bouhadra, B. Mamen, A. Menasria, M. Bourada, A.A. Bousahla, F. Bourada, A. Tounsi, A. Tounsi, M. Yaylaci, “Combined influence of variable distribution models and boundary conditions on the thermodynamic behavior of FG sandwich plates lying on various elastic foundations”, Structural Engineering and Mechanics, vol. 89, no. 2, pp. 103-119, 2024.
    https://doi.org/10.12989/sem.2024.89.2.103
  9. A. Tounsi ,  A.A. Bousahla ,  S.I. Tahir ,  A.H. Mostefa ,  F. Bourada ,  M.A. Al-Osta ,  A. Tounsi , “Influences of Different Boundary Conditions and Hygro-Thermal Environment on the Free Vibration Responses of FGM Sandwich Plates Resting on Viscoelastic Foundation”, International Journal of Structural Stability and Dynamics, vol. 24, no. 11, p. 2450117,2024.
    https://doi.org/10.1142/S0219455424501177
  10. S. Shrikantha Rao, K.V. Gangadharan, “Functionally graded composite materials: an overview”, Procedia Mater. Sci., vol. 5, no. 1, pp. 1291- 1299, 2014.
    https://doi.org/10.1016/j.mspro.2014.07.442
  11. H.S. Hedia, S.M. Aldousari, A.K. Abdellatif, N.A. Fouda, “New design of cemented stem using functionally graded materials (FGM)”, Biomed. Mater. Eng., vol. 24, no. 3, pp. 1575-1588, 2014.
    http://doi: 10.3233/BME-140962
  12. S. Nikbakht , S. Kamarian , M.A. Shakeri, “A review on optimization of composite structures Part II: Functionally graded materials”, Compos. Struct., vol. 214, pp. 83-102, 2019.
    http://doi.org/10.1016/j.compstruct.2019.01.105
  13. R. Madan, K. Saha, S. Bhowmick, “ Limit speeds and stresses in power law functionally graded rotating disks”, Advances in Materials Research, vol. 9, no. 2, pp. 115-131, 2020.
    http://doi.org/10.12989/amr.2020.9.2.115
  14. E.K. Njim, S.H. Bakhy, M. Al-Waily, “Free vibration analysis of imperfect functionally graded sandwich plates: analytical and experimental investigation”, Arch. Mater. Sci. Eng., vol. 111, no 2, pp. 49-65, 2021.
    https://doi.org/10.5604/01.3001.0015.5805
  15. L. Tokova, A. Yasinskyy, C.-C. Ma, “Effect of the layer inhomogeneity on the distribution of stresses and displacements in an elastic multilayer cylinder”, Acta Mechanica, vol. 228, no. 8, pp. 2865-2877, 2017.
    https://doi.org/10.1007/s00707-015-1519-8
  16. N.E. Dowling, "Mechanical behaviour of materials", Pearson, 2011.
  17. V. Rizov, “Delamination analysis of inhomogeneous viscoelastic beam of rectangular section subjected to torsion”, Coupled Systems Mechanics, vol. 12, no. 1, pp. 69-81, 2023.
    https://doi.org/10.12989/csm.2023.12.1.069
  18. V. Rizov, H. Altenbach, “Fracture analysis of inhomogeneous arch with two longitudinal cracks under non-linear creep”, Adv. Mater. Res., vol. 12, no 1, pp. 15-29, 2023.
    https://doi.org/10.12989/amr.2023.12.1.015
  19. V. Rizov, “Effects of Periodic Loading on Longitudinal Fracture in Viscoelastic Functionally Graded Beam Structures”, J. Appl. Comput. Mech., vol. 8, no. 1, pp. 370–378,2022.
    https://doi.org/10.22055/JACM.2021.37953.3141
  20. Hr. Varbanov, A. Tepavicharov, T. Ganev, “Applied theory of elasticity and plasticity”, Sofia, 1992.
Victor Rizov, "Functionally graded frames under support displacements: a longitudinal fracture analysis with refrence to non-linear relaxation", RAD Conf. Proc., vol. 8, 2024, pp. 16-19; https://doi.org/10.21175/RadProc.2024.04
Other topic

TWIST VELOCITY INFLUENCE ON LENGTHWISE FRACTURE OF INHOMOGENEOUS BARS UNDER TORSIONAL LOADING

Victor Rizov

DOI: 10.21175/RadProc.2024.05

Received: 6 AUG 2024, Received revised: 29 SEP 2024, Accepted: 1 OCT 2024, Published online: 24 NOV 2024

This paper is concerned with studying the influence of the twist velocity on lengthwise fracture of inhomogeneous load-carrying bar subjected to torsional loading. The bar under consideration has non-linear elastic behavior. The cross-section of the bar is a circle. The bar has three portions with different radius of the cross-section. The bar is under angles of twist that are time-dependent. The material of the bar is continuously inhomogeneous in radial direction. The influence of the twist velocity is taken into account by applying a non-linear stress-strain constitutive law that includes a term with the first derivative of the shear strain with respect to time. This constitutive law is used to develop a theoretical analysis of lengthwise fracture in terms of the strain energy release rate (SERR) with considering the twist velocity. Actually, obtaining of the SERR with taking into account the twist velocity is the basic aim of this paper. The parameters of the stressed and strained state of the twisted bar that are needed for deriving the SERR are obtained by analyzing the equilibrium of the bar portions. The energy balance in the bar is investigated to verify the SERR. Numerical results are obtained and reported in form of graphs for clarifying the effect of various factors and parameters on the SERR in continuously inhomogeneous bars under time-dependent twist.
  1. F. Chen, M. Jia, Y. She, Y. Wu, Q. Shen, L. Zhang, “Mechanical behavior of AlN/Mo functionally graded materials with various compositional structures”, J Alloys Compd., vol. 816, 152512, 2020.
    https://doi.org/10.1016/j.jallcom.2019.152512
  2. M.M. Nemat-Allal, M.H. Ata, M.R. Bayoumi, W. Khair- Eldeen, “Powder metallurgical fabrication and microstructural investigations of Aluminum/Steel functionally graded material”, Materials Sciences and Applications, vol. 2, no. 12, pp. 1708-1718, 2011.
    https://doi.org/10.4236/msa.2011.212228
  3. M. Rezaiee-Pajand, M. Mokhtari, A.R. Masoodi, “Stability and free vibration analysis of tapered sandwich columns with functionally graded core and flexible connections”, CEAS Aeronaut J, vol. 9, pp. 629–648, 2018.
    https://doi.org/10.1007/s13272-018-0311-6
  4. M. Rezaiee-Pajand, A.R. Masoodi, “Stability Analysis of Frame Having FG Tapered Beam–Column”, Int J Steel Struct, vol. 19, p. 446–468, 2019.
    https://doi.org/10.1007/s13296-018-0133-8
  5. N. Radhika, J. Sasikumar, J.L. Sylesh, R. Kishore, “Dry reciprocating wear and frictional behaviour of B4C reinforced functionally graded and homogenous aluminium matrix composites”, J. Mater. Res. Technol., vol. 9, no. 2, pp. 1578-1592, 2020.
    https://doi.org/10.1016/j.jmrt.2019.11.084
  6. A.J. Markworth, K.S. Ramesh, Jr. W.P. Parks, “Review: modeling studies applied to functionally graded materials”, J. Mater. Sci., vol. 30, 2183-2193, 1995.
    https://doi.org/10.1007/BF01184560
  7. https://doi.org/10.1007/BF01184560 7. J. Toudehdehghan, W. Lim, K.E. Foo1, M.I.N. Ma’arof, J. Mathews, “A brief review of functionally graded materials”, MATEC Web of Conferences, vol. 131, pp. 03010-1-6, 2017.
    https://doi.org/10.1051/matecconf/201713103010
  8. R.A. Ahmed, R.M. Fenjan, L.B. Hamad, N.M. Faleh, “ A review of effects of partial dynamic loading on dynamic response of nonlocal functionally graded material beams”, Adv. Mater. Res., vol. 9, no. 1, pp. 33-48, 2020.
    https://doi.org/10.12989/amr.2020.9.1.033
  9. Y. Tokovyy, C.-C. Ma, “Axisymmetric Stresses in an Elastic Radially Inhomogeneous Cylinder Under Length-Varying Loadings”, ASME J. Appl. Mech., vol. 83, no. 11, pp. 111007-1-7, 2016.
    https://doi.org/10.1115/1.4034459
  10. N.E. Dowling, Mechanical behaviour of materials, Pearson, 2011.
  11. Z. Belabed, A. Tounsi, A.A. Bousahla, A. Tounsi, M. Yaylacı, “Accurate free and forced vibration behavior prediction of functionally graded sandwich beams with variable cross-section: A finite element assessment”, Mech. Based Des. Struct. Mach., vol, 52, no. 11, pp. 9144-9177, 2024.
    https://doi.org/10.1080/15397734.2024.2337914
  12. Z. Belabed, A. Tounsi, A.A. Bousahla, A. Tounsi, M. Bourada and M. A. Al-Osta, “Free vibration analysis of Bi-Directional Functionally Graded Beams using a simple and efficient finite element model”, Struct. Eng. Mech., vol. 90, no. 3, pp. 233-252, 2024.
    https://doi.org/10.12989/sem.2024.90.3.233
  13. Z. Lakhdar, S. M. Chorfi, S. A. Belalia, S.A. et al., “Free vibration and bending analysis of porous bi- directional FGM sandwich shell using a TSDT p-version finite element method”, Acta Mech, vol. 235, pp. 3657–3686, 2024.
    https://doi.org/10.1007/s00707-024-03909-y
  14. V. Rizov, “Non-linear fracture in bi-directional graded shafts in torsion,” Multidiscip. Model. Mater. Struct., vol. 15, no. 1, pp. 156-169, 2019.
    https://doi.org/10.1108/MMMS-12-2017-0163
  15. V. Rizov, “Viscoelastic inhomogeneous beam under time-dependent strains: A longitudinal crack analysis”, Advances in Computational Design, vol. 6, no. 2, pp. 153-168, 2021.
    https://doi.org/10.12989/acd.2021.6.2.153
  16. V. Rizov, “Analysis of Two Lengthwise Cracks in a Viscoelastic Inhomogeneous Beam Structure”, Eng Trans, vol. 68, no. 4, pp. 397-415, 2020.
    https://doi.org/10.24423/EngTrans.1214.20201125
  17. P. A. Lukash, Fundamentals of Non-linear Structural Mechanics, Stroiizdat, 1978.
Victor Rizov, "Twist velocity influence on lengthwise fracture of inhomogeneous bars under torsional loading", RAD Conf. Proc., vol. 8, 2024, pp. 20-23; https://doi.org/10.21175/RadProc.2024.05
Microwave, Laser, RF and UV radiations

DIELECTRIC SEALERS AS A SOURCE OF RF OVEREXPOSURE IN WORKING ENVIRONMENT

M. Israel, M. Ivanova, V. Zaryabova, Ts. Shalamanova

DOI: 10.21175/RadProc.2024.06

Received: 31 OCT 2024, Received revised: 16 JAN 2025, Accepted: 25 JAN 2025, Published online: 30 JAN 2025

Dielectric heaters/sealers are widely used in the industry for different purposes as: welding, sealing, or curing dielectric materials. They are amongst electromagnetic field (EMF) sources in the industry that may cause excessive exposure to radiofrequency (RF) fields. This is due to their high power and possible use of unshielded electrodes. The frequencies used for sealers operation are in the range 10-100 MHz (mainly 13.56, 27.12, 37.00 and 40.68 MHz). The paper presents study of the electric and magnetic fields in plastic industry in Bulgaria covering 98 dielectric sealers of different types: frequencies 27.12 MHz, 40.68 MHz, 42 MHz. Most of them emit at frequency 27.12 MHz with powers from 0.6 kW to 50 kW. The article discusses specificity of the dielectric sealers as sources of EMFs in working environment and related approaches for measurements and exposure assessment. The average values of the electric field strength measured at the working places were from 64.4 V/m to 143.3 V/m; the maximal values were in the range 130 - 170 V/m, as the highest ones were registered around the highest power sealers (50 kW). Higher values were registered in the working premises with several sealers as well. Maximal electric field strengths reached up to 10 times action levels according to Directive 2013/35/EU [1]. The measured magnetic flux densities were in the range 0.19 – 0.25 μT, exceeding the action levels according to Directive 2013/35/EU. The EMF exposure assessment corresponds to the results of the medical study of workers in plastic industry conducted in our country that has shown adverse health effects observed in 31 % of persons working with dielectric sealers.
  1. Directive 2013/35/EC of Junе 26 2013 of the European Parliament and of the Council on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields). Retrieved from: https://eur- lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L: 2013:179:0001:0021:EN:PDF Retrieved on: October 28, 2024
  2. Safety in the use of radiofrequency dielectric heaters and sealers, A practical guide, Occupational safety and Health Series No. 71, 1998, Prepared by the ICNIRP in collaboration with the ILO and the WHO
  3. Electromagnetic Fields, vol. 1, Non-binding guide to good practice for implementing Directive 2013/35/EU, European Commission, Brussels, Belgium, 2015.
    Retrieved from:
    https://www.gla.ac.uk/media/Media_604615_smxx .pdf
  4. М. Израел, Изследване на радиочестотните електромагнитни полета като трудовохигиенен фактор и сравнение на методите на еластограмата и реограмата при електромагнитно въздействие върху човека, дисертационен труд, МА, София 1983(M. Israel, Investigation of radio frequency electromagnetic fields as a factor in different occupations and comparison of elastogram and rheogram methods in case of electromagnetic impact on humans, PhD Thesis, National Institute of Hygiene and professional diseases, Sofia, Bulgaria, 1983)
  5. B. Kolmodin-Hedman, K. Hansson Mild, M. Hagberg, E. Jönsson, M.C. Andersson, A. Eriksson, “Health problems among operators of plastic welding machines and exposure to radiofrequency electromagnetic fields”, Int Arch Occup Environ Health., vol. 60, pp. 243-247, 1988.
    https://doi.org/10.1007/BF00378471
  6. J. Wilén, R. Hörnsten, M. Sandström, P. Bjerle, U. Wiklund, O. Stensson, E. Lyskov, K. Mild, “Electromagnetic field exposure and health among RF plastic sealer operators”, Biolelectromagnetics, vol. 25, no. 1, pp. 5–15, 2004.
    https://doi.org/10.1002/bem.10154
  7. M. Israel, K. Vangelova, D. Velkova, M. Ivanova, “Cardiovascular risk under electromagnetic exposure in physiotherapy”, Environmentalist, vol. 27, pp. 539-543, 2007.
    https://doi.org/10.1007/s10669-007-9065-0
  8. K. Vangelova, M. Israel, D. Velkova, M. Ivanova, “Changes in excretion rate of stress hormones in medical staff exposed to electromagnetic radiation”, Environmentalist, pp. 552-555, 2007.
    https://doi.org/10.1007/s10669-007-9063-2
  9. The Council of European Union. (Jul. 12, 1999). Council Recommendation 1999/519/EC on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz). Retrieved from:
    https://op.europa.eu/en/publication-detail/- /publication/9509b04f-1df0-4221-bfa2- c7af77975556/language-en
    Retrieved on: Dec. 14, 2020
  10. Opinion on Potential health effects of exposure to electromagnetic fields (EMF), SCENIHR, European Commission, 2015.
    http://doi.org/10.2772/75635
  11. R. Stam, “Occupational exposure to radiofrequency electromagnetic fields”, Industrial Health, vol. 60, no. 3, pp. 201-215, 2022.
      http://doi.org/10.2486/indhealth.2021-0129
M. Israel, M. Ivanova, V. Zaryabova, Ts. Shalamanova, "Dielectric sealers as a source of RF overexposure in working environment", RAD Conf. Proc., vol. 8, 2024, pp. 24-27; http://doi.org/10.21175/RadProc.2024.06
Radiation Detectors

THE USE OF ORGANIC MATERIAL MAKROCLEAR FOR RADIOCHROMIC INTEGRATING DOSIMETRY OF HADRON BEAMS

David Zoul, Václav Zach, Jan Štursa

DOI: 10.21175/RadProc.2024.07

Received: 5 SEP 2024, Received revised: 25 NOV 2024, Accepted: 26 DEC 2024, Published online: 30 JAN 2025

The Laboratory of Cyclotrons and Fast Neutron Generators performed a series of experimental irradiations of MAKROCLEAR radiochromic integrating dosimeters by proton and deuteron beams accelerated on a U-120M cyclotron. These dosimeters have been developed at the Research Centre Rez. The dosimeters prepared in the form of small blocks were successively irradiated by protons and deuterons of various energies and in various doses. The results of the analyzes showed that MAKROCLEAR dosimeters are very useful as inexpensive and readily available integrating proton dosimeters in the dose range up to about 7.5 kGy, where their response in white light and monochromatic light with longer wavelenght (about 640 nm)is practically linear with a dose. An even higher measuring range was seen in the case of deuterons, where the response of dosimeters was linear with a dose up to 15 kGy.
  1. A. Shamshad, M. Rashid, A. Husain, "High gamma dose dosimetry by polycarbonates", Radiat. Phys. Chem., vol. 50, no. 3, pp. 307-311, 1997.
    https://doi.org/10.1016/S0969-806X(97)00038-8
  2. A.M.S. Galante, L.L. Campos, "Characterization of polycarbonate dosimeter for gamma-radiation dosimetry", P04-15, pp. 815-819, Helsinki, Finland, 2010.
    http://www.irpa2010europe.com/pdfs/proceedings/S 04-P04.pdf
  3. A.M.S. Galante, L.L. Campos, "Mapping radiation fields in containers for industrial -irradiation using polycarbonate dosimeters", Appl. Radiat. Isot., vol. 70, no. 7, pp. 1264-1266, 2012.
    https://doi.org/10.1016/j.apradiso.2011.12.046
  4. D. Zoul, M. Cabalka, M. Koplová, "A study of using polycarbonate as a reusable radiochromic integrating dosimeter for the determination of high doses of ionizing radiation", RAD Conference Proceedings, vol. 3, pp. 138-142, 2018.
    https://doi.org/10.21175/RadProc.2018.30
  5. D. Zoul, "Studie využití polykarbonátu pro integrující dozimetrii vysokých dávek ionizujícího záření (Study of the use of polycarbonate for integrating dosimetry of high doses of ionizing radiation)", Bezpečnost jaderné energie (Nuclear power safety), vol. 25, no. 6, pp. 141- 149, 2017.
  6. V. Serini, "Polycarbonates", Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2000.
    https://doi.org/10.1002/14356007.a21_207
  7. L. Zhao, I. J. Das. Gafchromik EBT film dosimetry in proton beams. Phys Med Biol., vol. 55, pp. 291-301, 2010.
    https://doi.org/10.1115/1.4049717
  8. S. Devic, N. Tomic, D. Lewis, “Reference radiochromic film dosimetry: Review of technical aspects”, Physical Media, vol. 32, issue 4, pp 541-556, 2016.
    https://doi.org/10.1016/j.ejmp.2016.02.008
  9. A. Niroomand-Rad, S.-T. Chiu-Tsao, M. P. Grams, D. F. Lewis, C. G. Soares, L, J. Van Battum, I. J. Das, S. Trichter, M. W. Kissick, G. Massillon-JL, P. E. Alvarez, M. F. Chan, “Report of AAPM Task Group 235 Radiochromic Film Dosimetry: An Update to TG-55”, Med. Phys., vol 47, pp. 5986-6025, 2020. https://doi.org/10.1002/mp.14497
  10. C.-M. Charlie Ma, T. Lomax“Proton and Carbon Ion Therapy”, Imaging in Medical Diagnosis and Therapy 1st Edition, 2012.
    https://doi.org/10.1201/b13070
  11. D. Zoul, Radiace která léčí – část čtvrtá (Radiation that Heals – Part Four), Aldebaran Bulletin, 27/2021, https://www.aldebaran.cz/bulletin/2021_27_rad.php
  12. Nuclear physics institute CAS http://www.ujf.cas.cz/en/
  13. D. Zoul, M. Koplová, V. Rosnecký, M. Košťál, M. Vinš, J. Šimon. M. Schulc, M. Cabalka, J. Kučera, V. Strunga, “The use of Polycarbonate as dosimeter of high dose”, ASME J. Nucl. Eng. Radiat. Sci., vol. 7, pp. 220031- 220035, 2021.
    https://doi.org/10.1115/1.4049717
  14. D. Zoul, M. Koplová, V. Rosnecký, H. Štěpánková, V. Římal, J. Štěpánek, P. Mojzeš, M. Procházka, "Studium molekulárních mechanismů radiochromického jevu v polykarbonátu (Study of molecular mechanisms of radiochromic effect in polycarbonate)", Bezpečnost jaderné energie (Nuclear power safety), vol. 26, no. 64, pp. 338-346, 2018.
  15. D. Zoul, "Studie tmavnutí polykarbonátových desek v poli ionizujícího záření, (A study of the changes in optical density of the polycarbonate plates in the field of ionizing radiation)", Bezpečnost jaderné energie (Nuclear power safety), vol. 24, no. 62, pp. 33-38, 2016.
  16. D. Zoul, M. Koplová, M. Zimina, O. Libera, V. Rosnecký, M. Košťál, J. Šimon, M. Schulc, M. Vinš, M. Cabalka, J. Kučera, V. Strunga, H. Štěpánková, V. Římal, J. Čížek, J. Štěpánek, M. Procházka, “Study of chemical processes in irradiated polycarbonate in the context of its applicability for integrating dosimetry of high doses”, Radiat. Phys. Chem., vol. 177, pp. 1-33, 2020.
    https://doi.org/10.1016/j.radphyschem.2020.109203
David Zoul, Václav Zach, Jan Štursa, "The use of organic material makroclear for radiochromic integrating dosimetry of hadron beams", RAD Conf. Proc., vol. 8, 2024, pp. 28-34; http://doi.org/10.21175/RadProc.2024.07
Radiobiology

EVALUATION OF THE ASSESSMENT DOSE WITH BIODOSIMETRY METHODS, APPLICABLE IN BULGARIA. USE OF DICENTRIC CHROMOSOMAL ASSAY (DCA) AND CYTOKINESIS-BLOCK MICRONUCLEUS ASSAY

Galina Racheva

DOI: 10.21175/RadProc.2024.08

Received: 24 SEP 2024, Received revised: 18 NOV 2024, Accepted: 17 DEC 2024, Published online: 30 JAN 2025

Radiation biodosimetry deals with the measurement of a biological response that serves as a surrogate for estimating the absorbed radiation dose in exposed humans. The biodosimetry methods include cytogenetic methods such as dicentric chromosomal assay (DCA), cytokinesis-block micronucleus assay (CBMN), Fluorescence in-situ hybridization (FISH) assay, Premature chromosome condensation (PCC), etc. All of them score the marking damages such dicentric chromosomes or centric rings to calculate the absorbed dose of ionizing radiation. As a part of the European union, Bulgarian radiobiology laboratories had to switch the direction of the mainly research activity to possibility for routine practice of analysis and diagnostic of the assessment dose after ionizing exposure. This possibility determines to use of more precise methods to diagnose cellular injuries accurately. For a short period of time Bulgarian laboratories had to choose method of analysis, to develop working protocols and their own calibration curves for them. The Research laboratory of Radiobiology and Radiation protection, Military Medical Academy-Sofia is in the process of integration of DCA as a main method of biodosimetry and CBMN as a supplementing method. The criteria to choose DCA as a main method is affordability and accuracy of the method. Next stage is to organize the whole process of integration as a routine diagnostic practice as additional source of information for the patients used by the clinical hematologists and oncologists. Aim of the study: The aim of the current study is to present and describe the selected biodosimetry methods, planned to be used in the Military Medical Academy-Sofia. Materials and methods:Dicentric chromosomal assay (DCA) and cytokinesis- block micronucleus assay (CBMN). Results: The review of the described methods, give the priority to the golden standard method (DCA). It is chosen as the most affordable, applicable and highly effective for the needs of the Scientific laboratory of Radiobiology and Radiation protection, Military Medical Academy-Sofia. Cytokinesis-block micronucleus assay (CBMN) is good supplementary method, but cannot be used as a main dosimetry method, because of its limitations. Conclusion: The biodosimetry assessment of the absorbed dose is a high skilled activity. It has involved team of professionals, correct selection of applicable methods and preliminary optimization of the process. Take into consideration of the advantages and disadvantages of the selected methods, the most affordable and effective method is DCA analysis.
  1. A.S. Balajee, H.C. Turner, R.C. Wilkins, “Radiation Biodosimetry: Current Status and Future Initiatives” Cytogenet. Genome Res., vol. 163, no. 3-4, pp. 85–88, 2023.
    https://doi.org/10.1159/000535488
  2. R. Havránková, “Biological effects of ionizing radiation”, Cas Lek Cesk, vol. 159. No. 7-8, pp. 258- 260, 2020.
    Retrieved from: www.europepmc.org/abstract/MED/33445930
  3. R. Mendelson, “Informed consent for stochastic effects of ionising radiation in diagnostic imaging”, Br. J. Radiol., vol. 95, no. 1132, pp. 2021126-1-3, 2022.
    https://doi.org/10.1259/bjr.20211265
  4. R. M’Kacher, B. Colicchio, C. Borie, S. Junker, V. Marquet, L. Heidingsfelder, K. Soehnlen, W. Najar, W.M. Hempel, N. Oudrhiri, et al., “Telomere and Centromere Staining Followed by M-FISH Improves Diagnosis of Chromosomal Instability and Its Clinical Utility”, Genes, vol. 1, no. 5, pp. 475-1-17, 2020
    https://doi.org/10.3390/genes11050475
  5. H. Romm, R.C. Wilkins, C.N. Coleman, et al., “Biological dosimetry by the triage dicentric chromosome assay: potential implications for treatment of acute radiation syndrome in radiological mass casualties”, Radiat. Res., vol. 175, no. 3, pp. 397- 404, 2011.
    https://doi.org/10.1667/rr2321.1
  6. H. Nobuyuki, F. Yuki, “Classification of radiation effects for dose limitation purposes: history, current situation and future prospects”, J. Radiat. Res., vol. 55, no. 4, pp. 629-640, 2014.
    https://doi.org/10.1093/jrr/rru019
  7. C. Herate, L. Sabatier, “Retrospective biodosimetry techniques: Focus on cytogenetics assays for individuals exposed to ionizing radiation”, Mutat. Res./Rev. Mutat. Res., vol. 783, 108287, 2020.
    https://doi.org/10.1016/j.mrrev.2019.108287
  8. International Atomic Energy Agency. Cytogenetic Analysis for Radiation Dose Assessment. Manual. Technical reports series, 2001, no. 405, Vienna, IAEA. Retrieved from: https://www.iaea.org/publications/6303/cytogenetic -analysis-for-radiation-dose-assessment
    Retrieved on: Sept. 24, 2024.
  9. International Organization for Standardization (ISO) Radiation protection—performance criteria for service laboratories performing biological dosimetry by cytogenetics ISO 19238, Geneva: ISO, 2014.
  10. S. Jang, J. Lee, S.H. Kim, S. Han, S.G. Shin, S. Lee, I. Kang, W.S. Jo, S. Jeong, S.J. Oh, C.G. Lee, “Radiation dose estimation with multiple artificial neural networks in dicentric chromosome assay”, Int. J. Radiat. Biol., vol. 100, no. 6, pp. 865-874, 2024.
    https://doi.org/10.1080/09553002.2024.2338531
  11. U. Oestreicher, D. Samaga, E. Ainsbury et al., “RENEB intercomparisons applying the conventional Dicentric Chromosome Assay (DCA)”, Int. J. Radiat. Biol., vol. 93, no. 1, pp. 20-29, 2017.
    https://doi.org/10.1080/09553002.2016.1233370
  12. F.N. Flegal, Y. Devantier, J.P. McNamee R.C. Wilkins, “Quick scan dicentric chromosome analysis for radiation biodosimetry”, Health Phys., vol. 98, no. 2, pp. 276-281, 2010.
    https://doi.org/10.1097/HP.0b013e3181aba9c7
  13. H. Thierens, A. Vral, “The micronucleus assay in radiation accidents”, Ann. Ist. Super Sanita, vol. 45, no. 3, pp. 260-264, 2009.
    Retrieved from: https://www.iss.it/documents/20126/45616/ANN_09_33_Thierens.pdf/16f376be-1fac-e656-3b4a- cc57c47691e7?t=1581100041525
  14. T. Rich, R.L. Allen, A.H. Wyllie, “Defying death after DNA damage”, Nature, vol. 407, pp. 777-783, 2000.
    https://doi.org/10.1038/35037717
  15. P.G. Prasanna, M. Moroni, T.C. Pellmar, “Triage dose assessment for partial-body exposure: Dicentric analysis”, Health Phys., vol. 98, no. 2, pp. 244–251, 2010.
    https://doi.org/10.1097/01.HP.0000348020.14969.4
  16. E.E. Manasanch, R.Z. Orlowski, “Proteasome inhibitors in cancer therapy”, Nat. Rev. Clin. Oncol., vol. 14, no. 7, pp. 417-433, 2017.
    https://doi.org/10.1038/nrclinonc.2016.206
  17. C. Beinke, M. Port, A. Riecke, C.G. Ruf, M. Abend, “Adaption of the Cytokinesis-Block Micronucleus Cytome Assay for Improved Triage Biodosimetry”, Radiation Research, vol. 185, no. 5, pp.461-472, 2016.
    https://doi.org/10.1667/rr14294.1
  18. M. Simonian, D. Shirasaki, V.S. Lee, D. Bervini, M. Grace, R.R.O. Loo, et al., “Proteomics identif ication of radiation-induced changes of membrane proteins in the rat model of arteriovenous malformation in pursuit of targets for brain AVM molecular therapy”, Clin. Proteomics, vol. 15, pp. 43-1-8, 2018.
    https://doi.org/10.1186/s12014-018-9217-x
  19. P. Voisin, “Standards in biological dosimetry: a requirement to perform an appropriate dose assessment”, Mutat. Res. Genet. Toxicol. Environ. Mutagen., vol. 793, pp. 115–122, 2015.
    https://doi.org/10.1016/j.mrgentox.2015.06.012
  20. K. Rothkamm, C. Beinke, H. Romm et al, “Comparison of established and emerging biodosimetry assays”, Radiat. Res., vol. 180, no. 2, pp. 111–119, 2013.
    https://doi.org/10.1667/RR3231.1
  21. B.L. Mahaney, K. Meek, S.P. Lees-Miller, “Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining”, Biochem J., vol. 417, no. 3, pp. 639-650, 2009.
    https://doi.org/10.1042/BJ20080413
  22. A. Léonard, J. Rueff, G.B. Gerber, E.D. Léonard, “Usefulness and limits of biological dosimetry based on cytogenetic methods”, Radiat. Prot. Dosim., vol. 115, no. 1-4, pp. 448-454, 2005.
    https://doi.org/10.1093/rpd/nci061
  23. L.M. Odetti, E.V. Paravani, et al., “Micronucleus test in reptiles: Current and future perspectives”, Mutat. Res. Genet. Toxicol. Environ. Mutagen., vol. 897, p. 50377, 2024.
    https://doi.org/10.1016/j.mrgentox.2024.503772
  24. A. Shibai-Ogata, C. Kakinuma, T. Hioki, T. Kasahara, “Evaluation of high-throughput screening for in vitro micronucleus test using fluorescence-based cell imaging”, Mutagenesis, vol. 26, no. 6, pp. 709-719, 2011.
    https://doi.org/10.1093/mutage/ger037
  25. M. Repin, G. Garty, R.J. Garippa, D.J. Brenner, “RABiT-III: an Automated Micronucleus Assay at a Non-Specialized Biodosimetry Facility”, Radiat Res., vol. 201, no. 6, pp. 567-571, 2024.
    https://doi.org/10.1667/rade-23-00120.1
  26. A. Vral, M. Fenech, H. Thierens, “The micronucleus assay as a biological dosimeter of in vivo ionising radiation exposure”, Mutagenesis, vol. 26, no. 1, pp.11–17, 2011.
    https://doi.org/10.1093/mutage/geq078
  27. M.T. Sproull, K.A. Camphausen, G.D. Koblentz, “Biodosimetry: A Future Tool for Medical Management of Radiological Emergencies”, Health Security, vol. 15, no. 6, pp. 599-610, 2017.
    https://doi.org/10.1089/hs.2017.0050
Galina Racheva, "Evaluation of the assessment dose with biodosimetry methods, applicable in Bulgaria. Use of dicentric chromosomal assay (DCA) and cytokinesis-block micronucleus assay", RAD Conf. Proc., vol. 8, 2024, pp. 35-38; http://doi.org/10.21175/RadProc.2024.08
Radiation Detectors

IN SITU TESTING OF A PROTOTYPE OF A LASER DOSIMETRY PROBE WITH WIRELESS DATA TRANSMISSION BASED ON THE RADIOCHROMIC PHENOMENON IN AN ORGANIC DETECTION ELEMENT

David Zoul, Hana Vodičková, Jan Vít

DOI: 10.21175/RadProc.2024.09

Received: 5 SEP 2024, Received revised: 4 DEC 2024, Accepted: 9 JAN 2025, Published online: 12 FEB 2025

In 2023, the Radiochemistry II Department of the Research Centre Rez tested a prototype of a laser telescopic probe with wireless data transmission, based on the radiochromic phenomenon in an organic detection element. This article includes a detailed description of the entire device, documentation of the course of the performed experiments, and measurement results. The laser dosimetric probes known so far consist of optical fibers, at the end of which a small scintillation or radiochromic element sensitive to ionizing radiation is attached. The use of fiber optics makes sense only in cases where the fiber itself carrying the light signal receives such a low dose of ionizing radiation that it does not measurably affect its optical properties. This technology has therefore found application primarily in the field of radiation oncology, where it is necessary to measure doses in units of centigrays (cGy) to grays (Gy), which fiber optics can handle without any problems. The laser dosimetric probe according to our technical solution eliminates the aforementioned shortcomings. In contrast with the use of optical fibers, there is no Radiation-Induced Attenuation (RIA), nor Cerenkov signal, because the light pipe is filled with air. Despite the loss of flexibility, this constitutes a clear advantage over the use of optical fibers. The probe is designed and tested for measuring very high doses in the order of units to hundreds of kilograys (kGy) and the corresponding dose rates. It is intended for industrial applications, such as measuring dose rates inside the primary circuit of nuclear reactors, near the core of nuclear reactors, in the bowels of high-activity gamma irradiation plants, hot chambers, potentially also at the site of nuclear or general radiation accidents with difficult access to the source of ionizing radiation (fire, collapse, melting of the reactor core, loss of control over the source, etc.) The experiments performed have proven the functionality and temporal stability of the constructed device for dosimetry of high dose rates in hard-to-access spaces, such as the channels of a research nuclear reactor, etc. Pilot measurements of the dose rate directly at the edge of the core during the planned shutdown of the LVR-15 nuclear research reactor have already helped to provide some valuable information on the overall inventory of activity inside the core. From the rate of decline of activity in the active zone during a shutdown, it may be possible in the future to make inferences e.g. also the radioisotope spectrum.
  1. D. Zoul, M. Cabalka, M. Koplová, “A study of using polycarbonate as a reusable radiochromic integrating dosimeter for the determination of high doses of ionizing radiation”, RAD Conference Proceedings, vol. 3, pp. 138-142, 2018.
    https://doi.org/10.21175/RadProc.2018.30
  2. D. Zoul, M. Cabalka, M. Koplová, “Studie využití polykarbonátu pro integrující dozimetrii vysokých dávek ionizujícího záření (Study of the use of polycarbonate for integrating dosimetry of high doses of ionizing radiation)”, Bezpečnost jaderné energie (Nuclear power safety), vol. 25, no. 63, pp. 141-149, 2017.
  3. D. Zoul, “A study of the changes in optical density of the polycarbonate plates in the field of ionizing radiation”, Bezpečnost jaderné energie (Nuclear power safety), vol. 24, no. 62, pp. 33-38, 2016.
  4. D. Zoul, M. Koplová, V. Rosnecký, H. Štěpánková, V. Římal, J. Štěpánek, P. Mojzeš, M. Procházka, “A study of the molecular mechanisms of the radiochromic effect in the polycarbonate”, Nuclear power safety, vol. 26, no. 64, pp. 338-346, 2018.
  5. D. Zoul, M. Koplová, O. Libera, M. Zimina, V. Rosnecký, M. Košťál, M. Cabalka, J. Kučera, V. Strunga, H. Štěpánková, V. Římal, J. Čížek, J. Štěpánek, M. Procházka, “Study of chemical processes in irradiated polycarbonate in the context of applicability for integrating dosimetry of high doses”, Radiat. Phys. Chem., vol. 177, pp. 1-33, 2020.
    https://doi.org/10.1016/j.radphyschem.2020.109203
  6. D. Zoul, M. Koplová, V. Rosnecký, M. Košťál, M. Vinš, J. Šimon, M. Schulc, M. Cabalka, J. Kučera, V. Strunga, “The use of Polycarbonate as dosimeter of high doses”, J. Nucl. Eng. Radiat. Sci., vol. 7, pp. 220031-220035, 2021.
    https://doi.org/10.1115/1.4049717
  7. V. Serini, "Polycarbonates", Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2000.
    https://doi.org/10.1002/14356007.a21_207
  8. A. Shamshad, M. Rashid, A. Husain, "High gamma dose dosimetry by polycarbonates", Radiat. Phys. Chem., vol. 50, no. 3, pp. 307-311, 1997.
    https://doi.org/10.1016/S0969-806X(97)00038-8
  9. A.M.S. Galante, L.L. Campos, "Characterization of polycarbonate dosimeter for gamma-radiation dosimetry", Proceedings of 3rd Europian IRPA Congress, Session S04Dosimetry P04-15, pp. 815- 819, Helsinki, Finland, 2010.
    http://www.irpa2010europe.com/pdfs/proceedings/S04- P04.pdf
  10. A.M.S. Galante, L.L. Campos, "Mapping radiation fields in containers for industrial -irradiation using polycarbonate dosimeters", Appl. Radiat. Isot., vol. 70, no. 7, pp. 1264-1266, 2012.
    https://doi.org/10.1016/j.apradiso.2011.12.046
  11. A. Jančář, J. Čulen, B. Mikel, M. Jelínek, F. Mravec, V. Přenosil, Z Matěj. “Development of a high range gamma detector with optical fiber for long transmission”, International Conference on Radiation Applications (RAP 2022), Book of Abstracts, 2022.
David Zoul , Hana Vodičková, Jan Vít, "In situ testing of a prototype of a laser dosimetry probe with wireless data transmission based on the radiochromic phenomenon in an organic detection element", RAD Conf. Proc., vol. 8, 2024, pp. 39-45; http://doi.org/10.21175/RadProc.2024.09
High Intensity Laser-Plasma Particle Sources

RADIATION PROTECTION AT THE ELI BEAMLINES LASER FACILITY

Benoit Lefebvre, Anna Cimmino, Dávid Horváth, Roman Truneček, Roberto Versaci, Srimanta Maity, Mihail Miceski, Alexander Molodozhentsev, Uddhab Chaulagain, Veronika Olšovcová

DOI: 10.21175/RadProc.2024.10

Received: 31 OCT 2024, Received revised: 6 JAN 2025, Accepted: 20 JAN 2025, Published online: 23 FEB 2025

The ELI ERIC (Extreme Light Infrastructure European Research Infrastructure Consortium) aims at developing and operating the next generation of high-power laser systems in Europe. The Czech pillar of the consortium is the ELI Beamlines facility. It hosts world-class lasers with peak powers reaching 10 PW and repetition rates of up to 1 kHz. There, laser-driven beamlines deliver ultra-bright and ultra-short sources of X-rays, ions, and electrons for fundamental and applied research. Beam time is offered to users worldwide. The pulsed mixed radiation fields generated at the facility are challenging from a radiation protection standpoint. The facility beamlines feature cutoff energies reaching up to hundreds of MeV for ions and GeV for electrons. The beams are characterised by a broad spectrum with radiation delivered over an extremely short time structure, generally less than 1 ps. Furthermore, copious amounts of stray ionizing radiation are produced in reason of the intrinsic laser-matter interactions and beam scattering. An overview of radiation protection considerations at the facility is presented on the topics of radiation shielding and monitoring, and Monte Carlo simulation studies. Additionally, radiological case studies of beamlines under commissioning are presented.
  1. G. Korn et al., “ELI - Extreme Light Infrastructure Whitebook”, Science and Technology with Ultra- Intense Lasers, THOSS Media GmbH, 2011. https://eli-laser.eu/media/1019/eli-whitebook.pdf
  2. A. Cimmino et al., “Radiation Protection at Petawatt Laser-Driven Accelerator Facilities: The ELI Beamlines Case”, Nucl. Scienc. Eng., vol. 198, no. 2, 245–263, 2024.
    https://doi.org/10.1080/00295639.2023.2191585
  3. F. Batysta et al., “Pulse synchronization system for picosecond pulse-pumped OPCPA with femtosecond- level relative timing jitter”, Opt. Express, vol. 22, no. 2, pp. 106-30281-30286, 2014.
    https://doi.org/10.1364/OE.22.030281
  4. J. T. Green et al., “L2-DUHA 100 TW High Repetition Rate Laser System at ELI-Beamlines: Key Design Considerations”, Rev. Laser Eng., vol. 49, no. 2, pp. 106-109, 2021.
    https://doi.org/10.2184/lsj.49.2_106
  5. E. Sistrunk et al., “All Diode-Pumped, High-repetition- rate Advanced Petawatt Laser System (HAPLS)”, Conference on Lasers and Electro-Optics, OSA Technical Digest, 2017, paper STh1L.2.
    https://doi.org/10.1364/CLEO_SI.2017.STh1L.2
  6. F. Batysta et al., “Spectral pulse shaping of a 5 Hz, multi-joule, broadband optical parametric chirped pulse amplification frontend for a 10 PW laser system”, Opt. Lett., vol. 43, no. 16, pp. 3866-3869, 2018.
    https://doi.org/10.1364/OL.43.003866
  7. S. Weber et al., “P3: an installation for high-energy density plasma physics and ultra-high intensity laser- matter interaction at ELI-Beamlines”, Matter Radiat. Extremes, vol. 2, pp. 149-176, 2017.
    https://doi.org/10.1016/j.mre.2017.03.003
  8. F. Schillaci et al., “The ELIMAIA Laser–Plasma Ion Accelerator: Technological Commissioning and Perspectives”, Quantum Beam Sci., vol. 6, no. 4, pp. 30-1-23, 2022.
    https://doi.org/10.3390/qubs6040030
  9. G.A.P. Cirrone et al., “ELIMED-ELIMAIA: The First Open User Irradiation Beamline for Laser-Plasma- Accelerated Ion Beams”, Front. Phys., vol. 8, pp. 564907-1-8, 2020.
    https://doi.org/10.3389/fphy.2020.564907
  10. E. A. Vishnyakov et al., “Compact undulator- based soft x-ray radiation source at ELI Beamlines: user-oriented program”, Proc. SPIE 12582, Compact Radiation Sources from EUV to Gamma-rays: Development and Applications, 12582, pp. 1258209-1- 10, 2023.
    https://doi.org/10.1117/12.2665377
  11. G. Grittani et al., “ELI-ELBA: fundamental science investigations with high power lasers at ELI- Beamlines”, OSA High-brightness Sources and Light- driven Interactions Congress, Optica Publishing Group, JM3A.20, 2020.
    https://doi.org/10.1364/EUVXRAY.2020.JM3A.20
  12. U. Chaulagain et al., “ELI Gammatron Beamline: A Dawn of Ultrafast Hard X-ray Science”, Photonics, vol. 9, no. 11, pp. 853-1-23, 2022.
    https://doi.org/10.3390/photonics9110853
  13. C.M. Lazzarini et al., “Ultrarelativistic electron beams accelerated by terawatt scalable kHz laser”, Phys. Plasmas, vol. 31, no. 3, pp. 030703-1-6, 2024.
    https://doi.org/10.1063/5.0189051
  14. Extreme Light Infrastructure ERIC, “ELI User Portal”, Website (current as of Oct. 31, 2024) URL: https://up.eli-laser.eu
  15. Státní úřad pro jadernou bezpečnost, “Atomic Law”, (current as of Oct. 31, 2024) (in Czech). https://www.sujb.cz/legislativa/atomove-pravo
  16. Member States of the European Union, “Consolidated version of the Treaty establishing the European Atomic Energy Community”, OJ C 203, 7.6.2016, p. 1–112, 2016. http://data.europa.eu/eli/treaty/euratom_2016/oj
  17. C. Ahdida et al, “New Capabilities of the FLUKA Multi-Purpose Code”, Front. Phys., vol. 9, pp. 788253- 1-14, 2022.
    https://doi.org/10.3389/fphy.2021.788253
  18. G. Battistoni et al., “Overview of the FLUKA code”, Ann. Nucl. Energy, vol. 82, pp. 10-18, 2015.
    https://doi.org/10.1016/j.anucene.2014.11.007
  19. V. Vlachoudis, “FLAIR: A Powerful But User Friendly Graphical Interface For FLUKA”, in Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics, 2009.
    https://cds.cern.ch/record/2749540
  20. T.D. Arber et al., “Contemporary particle-in-cell approach to laser-plasma modeling”, Plasma Phys. Control. Fusion, vol. 57, no. 11, pp. 113001-1-26, 2015.
    https://doi.org/10.1088/0741-3335/57/11/113001
  21. C. Sneha, “ICRU report 95 - Operational quantities for external radiation exposure”, Rad. Prot. Env., vol. 44, no. 2, pp. 116-119, 2021.
    https://dx.doi.org/10.4103/rpe.rpe_38_21
Benoit Lefebvre, Anna Cimmino, Dávid Horváth, Roman Truneček, Roberto Versaci, Srimanta Maity, Mihail Miceski, Alexander Molodozhentsev, Uddhab Chaulagain, Veronika Olšovcová, "Radiation protection at the ELI Beamlines laser facility", RAD Conf. Proc., vol. 8, 2024, pp. 46-52; http://doi.org/10.21175/RadProc.2024.10
Radiopharmaceuticals

ASTATINE-211 AS AN EMERGING RADIOISOTOPE FOR TARGETED ALPHA THERAPY (TAT)

Paulina Apostolova, Jean Francois-Gestin, Sanja Vranjes-Djuric, Marija Arev, Emilija Janevik - Ivanovska

DOI: 10.21175/RadProc.2024.11

Received: 24 NOV 2024, Received revised: 6 FEB 2025, Accepted: 18 FEB 2025, Published online: 8 MARCH 2025

Cancer treatment presents complex challenges, necessitating the exploration of innovative approaches for diagnosis and therapy. Among emerging prospects, Radiopharmaceutical Therapy (RPT) using α- emitting radionuclides has gained notable attention. This article provides an overview of the literature on Targeted Alpha Therapy (TAT), explicitly focusing on astatine-211 ( 211At). It discusses methodologies for labeling 211At, along with the associated challenges, to contribute to a deeper understanding of its potential role in TAT. The physical properties of 211At make it a promising candidate for treating micrometastases and disseminated tumours. Its high linear energy transfer and limited tissue range minimize the damage to healthy cells. The review explores the implications of the ongoing research project NOAR- COST focused on Network for Optimized Astatine labeled Radiopharmaceuticals. Overall, the article underscores the growing significance of the α-emitting radionuclides in cancer therapy and provides an overview of the clinical studies, highlighting the potential for 211At to become a pivotal component of TAT.
  1. National Cancer Institute. “Types of cancer treatment.” U.S. Department of Health and Human Services.
    Retrieved from: https://www.cancer.gov/about- cancer/treatment/types
    Retrieved on: Aug. 20, 2024
  2. G. Sgouros, L. Bodei, M.R. McDevitt, J.R. Nedrow, ‘’Radiopharmaceutical therapy in cancer: clinical advances and challenges”, Nat. Rev.Drug Discov., vol. 19, pp. 589–608, 2020.
    https://doi.org/10.1038/s41573-020-0073-9
  3. S.M. Qaim, “Therapeutic radionuclides and nuclear data”, Radiochima Acta, vol. 89, no.4-5, pp. 297–304, 2001.
    https://doi.org/10.1524/ract.2001.89.4-5.297
  4. A. Yordanova, E. Eppard, S. Kürpig, R.A. Bundschuh, S. Schönberger, M. Gonzalez-Carmona, G. Feldmann, H. Ahmadzadehfar, M. Essler, “Theranostics in nuclear medicine practice” Onco Targets Ther., vol. 10, pp. 4821– 4828, 2017.
    https://doi.org/10.2147/OTT.S140671
  5. S. Salih, A. Alkatheeri, W. Alomaim, A. Elliyanti, “Radiopharmaceutical Treatments for Cancer Therapy, Radionuclides Characteristics, Applications, and Challenges”, Molecules, vol. 27, no. 16, p. 5231, 2022.
    https://doi.org/10.3390/molecules27165231
  6. Ø.S. Bruland, R.H. Larsen, R.P. Baum, A. Juzeniene, “Editorial: Targeted alpha particle therapy in oncology”. Front. Med., vol. 10, p. 1165747, 2023.
    https://doi.org/10.3389/fmed.2023.1165747
  7. G. Sgouros, A.M. Ballangrud, J.G. Jurcic, M.R. McDevitt, J.L. Humm, Y. E. Erdi, B.M. Mehta, R.D. Finn, S.M. Larson, D.A. Scheinberg, “Pharmacokinetics and dosimetry of an α-particle emitter antibody: 213Bi-HuM195 (anti-CD33) in patients with leukemia”, J.Nucl.Med., vol. 40, no. 11, pp 1935–1946, 1999.
  8. European Pharmaceutical Review, "The future of targeted alpha therapy: development and manufacture". Retrieved from:
    https://www.europeanpharmaceuticalreview.com/article/217962/the-future-of-targeted-alpha-therapy- development-and-manufacture/
    Retrieved on: Aug. 16, 2024.
  9. U.S. National Library of Medicine, ClinicalTrials.gov. "Search Results for 'Targeted Alpha Therapy and Cancer" Retrieved from: https://clinicaltrials.gov/search?cond=Cancer&intr=targe ted%20alpha%20therapy&sort=StudyFirstPostDate.
    Retrieved on: Aug. 31, 2024.
  10. F.D.C. Guerra Liberal, J.M. O'Sullivan, S.J. McMahon, K.M. Prise, “Targeted Alpha Therapy: Current Clinical Applications”, Cancer Biother. Radiopharm., vol. 35, no 6, pp. 404-417, 2020.
    https://doi.org/10.1089/cbr.2020.3576
  11. R. Eychenne, M. Chérel, F. Haddad, F. Guérard, J.F. Gestin, “Overview of the Most Promising Radionuclides for Targeted Alpha Therapy: The "Hopeful Eight", Pharmaceutics, vol. 13, no. 6, pp. 906-1-50, 2021.
    https://doi.org/10.3390/pharmaceutics13060906
  12. Y.S. Kim, M.W. Brechbie. “An overview of targeted alpha therapy”, Tumour Biol, vol. 33, no. 3, pp. 573-590, 2012.
    https://doi.org/10.1007/s13277-011-0286-y
  13. O. Couturier, S. Supiot, M. Degraef-Mougin, A. Alain Faivre-Chauvet, T. Carlier, J.-F. Chatal, F. Davodeau, M. Cherel, “Cancer radioimmunotherapy with alpha-emitting nuclides”, Eur J Nucl Med Mol Imaging, vol. 32, no. 5, pp. 601-614, 2005.
    https://doi.org/10.1007/s00259-005-1803-2
  14. T.G.A. Reuvers, R. Kanaar, J.Nonnekens, “DNA Damage- Inducing Anticancer Therapies: From Global to Precision Damage”, Cancers, vol. 12, pp. 2098-1-22, 2020.
    https://doi.org/10.3390/cancers12082098
  15. J. P. Pouget, J. Constanzo. “Revisiting the Radiobiology of Targeted Alpha Therapy”, Frontiers in medicine, vol. 8, 692436, 2021.
    https://doi.org/10.3389/fmed.2021.692436
  16. I.A. Kassis, S.J. Adelstein, “Radiobiologic principles of radionuclide therapy”, J. Nucl. Med, vol. 46, suppl. 1, pp. 4S–12S, 2005.
  17. T. Jabbar, S. Bashir, M. I. Babar, “Review of current status of targeted alpha therapy in cancer treatment”, Nuclear medicine review. Central & Eastern Europe, vol. 26, no. 0, pp. 54–67, 2023.
    https://doi.org/10.5603/NMR.2023.0003
  18. J. Elgqvist, S. Frost, J.P. Pouget, P. Albertsson, “The potential and hurdles of targeted alpha therapy - clinical trials and beyond”, Front Oncol., vol. 3, no. 324, 2014.
    https://doi.org/10.3389/fonc.2013.00324
  19. A. Jang, A.T. Kendi, G.B. Johnson, T.R. Halfdanarson, O. Sartor, “Targeted Alpha-Particle Therapy: A Review of Current Trials”, Int. J. Mol. Sci., vol. 24, no. 14, p. 11626- 1-15, 2023.
    https://doi.org/10.3390/ijms241411626
  20. M. Miederer, M. Benešová-Schäfer, C. Mamat, D. Kästner, M. Pretze, E. Michler, C. Brogsitter, J. Kotzerke, K. Kopka, D.A Scheinberg, M.R. McDevitt, “Alpha-Emitting Radionuclides: Current Status and Future Perspectives”, Pharmaceuticals, vol. 17, p. 76, 2024.
    https://doi.org/10.3390/ph17010076
  21. M.R. McDevitt, R.D. Finn, D. Ma, S.M. Larson, D.A. Scheinberg, “Preparation of alpha-emitting 213Bi-labeled antibody constructs for clinical use”, J. Nucl. Med., vol. 40, no. 10, pp. 1722–1727, 1999.
  22. S. Heeger, G. Moldenhauer, G. Egerer, T. Nikula, C. Apostolidis, M. Brechbiel, U. Haberkorn, A. D. Ho, R. Haas, “Alpha radioimmunotherapy of B-lineage non-Hodgkin’s lymphoma using 213Bi-labeled anti-CD19- and anti-CD20-CHX-A”-DTPA conjugates”, J. Clin. Oncol., vol. 22, no. S14, p. 2625, 2004.
    https://doi.org/10.1200/jco.2004.22.90140.2625
  23. B.J. Allen, A.A. Singla, S.M. Rizvi, P. Graham, F. Bruchertseifer, C. Apostolidis, A. Morgenstern, “Analysis of patient survival in a phase I trial of systemic targeted a- therapy for metastatic melanoma”, Immunotherapy, vol. 3, no. 9, pp. 1041-1050, 2011.
    https://doi.org/10.2217/imt.11.97
  24. M.E. Autenrieth, C. Seidl, F. Bruchertseifer, T. Horn, F. Kurtz, B. Feuerecker, C. D'Alessandria, C. Pfob , S. Nekolla, C. Apostolidis , S. Mirzadeh, J. E. Gschwend, M. Schwaiger , K. Scheidhauer , A. Morgenstern, “Treatment of carcinoma in situ of the urinary bladder with an alpha- emitter immunoconjugate targeting the epidermal growth factor receptor: A pilot study”, Eur. J. Nucl. Med. Mol. Imaging, vol. 45, pp. 1364-1371, 2018.
    https://doi.org/10.1007/s00259-018-4003-6
  25. D. Cordier, F. Forrer, F. Bruchertseifer, A. Morgenstern, C. Apostolidis, S. Good, J. Müller-Brand, H. Mäcke, J.C. Reubi, A. Merlo, “Targeted alpha-radionuclide therapy of functionally critically located gliomas with 213Bi- DOTA[Thi8,Met(O2)11]-substance P: A pilot trial”,Eur. J. Nucl. Med. Mol. Imaging, vol. 37, pp. 1335-1344, 2010.
    https://doi.org/10.1007/s00259-010-1385-5
  26. C. Kratochwil, F.L. Giesel, F. Bruchertseifer W. Mier, C. Apostolidis, R. Boll, K. Murphy, U. Haberkorn & A. Morgenstern, “ 213Bi-DOTATOC receptor-targeted alpha- radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: A first-in-human experience”, Eur. J. Nucl. Med. Mol. Imaging, vol. 41, pp. 2106-2119, 2014.
    https://doi.org/10.1007/s00259-014-2857-9
  27. U.S. National Library of Medicine, ClinicalTrials.gov. "Search Results for 212Pb".
    Retrieved from:
    https://clinicaltrials.gov/search?intr=212Pb&limit=50&p age=1
    Retrieved on: Sep. 02, 2024.
  28. Production and Quality control of Actinium-225 radiopharmaceuticals, IAEA-TECDOC-2057, IAEA, Vienna, Austria, 2024, pp. 1-62.
    https://doi.org/10.61092/iaea.95h3-2ji2
    Retrieved from:
    https://www.iaea.org/publications/15707/production- and-quality-control-of-actinium-225-radiopharmaceuticals
  29. U.S. National Library of Medicine, ClinicalTrials.gov. "Search Results for actinium-225 and Ac-225".
    https://clinicaltrials.gov/search?term=actinium-225
    Retrieved on: Jan. 23, 2025.
  30. P. G. Kluetz, W. Pierce, V. E. Maher, H. Zhang, S. Tang, P. Song, Q. Liu, M. T.,Haber, E. E. Leutzinger, A. Al-Hakim, W. Chen, T. Palmby, E. Alebachew, R. Sridhara, A. Ibrahim, R. Justice, R. Pazdur, “Radium Ra-223 dichloride injection: U.S. Food and Drug Administration drug approval summary”, Clin. Cancer Res., vol. 20, no. 1, pp. 9–14, 2014.
    https://doi.org/10.1158/1078-0432.CCR-13-2665
  31. C. Fry, M. Thoennessen, “Discovery of the astatine, radon, francium, and radium isotopes”, Atomic Data and Nuclear Data Tables, vol. 99, no. 5, pp. 497-519, 2013.
    https://doi.org/10.1016/j.adt.2012.05.003
  32. M.B.C. Sevenois, B.WM. Miller, H.J. Jensen, M.D'Huyvetter, P. Covens, “Optimized cyclotron production of 211At: The challenge of 210Po- characterization”, Radiat. Phys. Chem., vol. 212, 111155, 2023.
    https://doi.org/10.1016/j.radphyschem.2023.111155
  33. S. Lindegren, T. Bäck, H.J. Jensen, “Dry-distillation of astatine-211 from irradiated bismuth targets: a time- saving procedure with high recovery yields”,Appl. Radiat. Isot., vol. 55, no. 2, pp. 157-60, 2001.
    https://doi.org/10.1016/s0969-8043(01)00044-6
  34. E.R. Balkin, D.K. Hamlin, K. Gagnon, M.-K. Chyan, S. Pal, Watanabe, S.D.S. Wilbur, “Evaluation of a Wet Chemistry Method for Isolation of Cyclotron Produced [ 211At]Astatine”, Appl. Sci., vol. 3, no. 3, pp. 636-655, 2013 https://doi.org/10.3390/app3030636
  35. M.R. Zalutsky, D.A. Reardon, O.R. Pozzi, G. Vaidyanathan, D.D. Bigner, “Targeted alpha-particle radiotherapy with 211At-labeled monoclonal antibodies”, Nucl. Med. Biol., vol. 34, no. 7, pp. 779–785, 2007.
    https://doi.org/10.1016/j.nucmedbio.2007.03.007
  36. G. Sgouros et al., MIRD Pamphlet No. 22 (Abridged): Radiobiology and Dosimetry of α-Particle Emitters for Targeted Radionuclide Therapy, J. Nucl. Med., vol. 51, no.2, pp. 311-328, 2010.
    https://doi.org/10.2967/jnumed.108.058651
  37. F. Guérard, C. Maingueneau, L. Liu, R. Eychenne, J.F. Gestin, G. Montavon, N. Galland, “Advances in the Chemistry of Astatine and Implications for the Development of Radiopharmaceuticals”,Acc. Chem. Res., vol. 54, no. 16, pp. 3264–3275, 2021.
    https://doi.org/10.1021/acs.accounts.1c00327
  38. Y. Feng and M. R. Zalutsky, “Production, purification and availability of 211At: term steps towards global access”, Nucl. Med. Biol., vol. 100-101, pp. 12-23, 2021.
    https://doi.org/10.1016/j.nucmedbio.2021.05.007
  39. R. Eychenne, C. Alliot, J.-F Gestin, F. Guérard, “Radiolabeling Chemistry with Heavy Halogens Iodine and Astatine”, Biomedical Sciences, 2021.
    https://inserm.hal.science/inserm-03332003
  40. M. Vanermen, M. Ligeour, M.C. Oliveira, et al. “Astatine- 211 radiolabelling chemistry: from basics to advanced biological applications”, EJNMMI Radiopharm. Chem., vol. 9, no. 69, 2024.
    https://doi.org/10.1186/s41181-024-00298-4
  41. S. Hirata, K. Mishiro, K. Washiyama, M. Munekane, T. Fuchigami, Y. Arano, K. Takahashi, S. Kinuya, K. Ogawa,”In Vivo Stability Improvement of Astatobenzene Derivatives by Introducing Neighboring Substituents”, J of Med chem, Advance online publication, 2025.
    https://doi.org/10.1021/acs.jmedchem.4c02188
  42. F. Guérard, J.-F. Gestin, M.W. Brechbiel, “Production of [(211)At]-astatinated radiopharmaceuticals and applications in targeted α-particle therapy”, Cancer Biother Radiopharm. vol. 28, no.1, pp. 1-20, 2013.
    https://doi.org/10.1089/cbr.2012.1292
  43. Y.V. Norseev, “Synthesis of astatine-tagged methylene blue, a compound for fighting micrometastases and individual cells of melanoma”, J. Radioanal. Nucl. Chem, vol. 237, pp. 155–158, 1998.
    https://doi.org/10.1007/BF02386681
  44. G. Vaidyanathan, M.R. Zalutsky, “1-(m- [ 211At]astatobenzyl)guanidine: synthesis via astato demetalation and preliminary in vitro and in vivo evaluation”, Bioconjug. Chem., vol. 3, no. 6, pp. 499-503, 1992.
    https://doi.org/10.1021/bc00018a006
  45. F. Guérard, L. Navarro, Y.S. Lee, A. Roumesy, C. Alliot, M. Chérel, M.W. Brechbiel, J.-F. Gestin, “Bifunctional aryliodonium salts for highly efficient radioiodination and astatination of antibodies”, Bioorg. Med. Chem., vol. 25, no. 21, pp. 5975-5980, 2017.
    https://doi.org/10.1016/j.bmc.2017.09.022
  46. M. Berdal, S. Gouard, R. Eychenne et al., “Investigation on the reactivity of nucleophilic radiohalogens with arylboronic acids in water: access to an efficient single- step method for the radioiodination and astatination of antibodies”, Chem. Sci, vol. 12, no. 4, pp. 1458-1468, 2021.
    https://doi.org/10.1039/d0sc05191h
  47. S.W. Reilly, M. Makvandi, K. Xu, R.H. Mach, “Rapid Cu- Catalyzed [211At]Astatination and [125I]Iodination of Boronic Esters at Room Temperature” Org. Lett., vol. 20, no. 7, pp. 1752-1755, 2018.
    https://doi.org/10.1021/acs.orglett.8b00232
  48. G. Vaidyanathan, O.R. Pozzi, J. Choi, X.G. Zhao, S. Murphy, M.R. Zalutsky, “Labeling Monoclonal Antibody with α-emitting 211At at High Activity Levels via a Tin Precursor”, Cancer Biother. Radiopharm., vol. 35, no. 7, pp. 511-519, 2020.
    https://doi.org/10.1089/cbr.2019.3204
  49. M.R. Zalutsky, P.K. Garg, H.S. Friedman, D.D. Bigner, “Labeling monoclonal antibodies and F(ab')2 fragments with the alpha-particle-emitting nuclide astatine-211: preservation of immunoreactivity and in vivo localizing capacity”, Proc. Natl. Acad. Sci., vol. 86, no. 18, pp. 7149- 7153, 1989.
    https://doi.org/10.1073/pnas.86.18.7149
  50. S. Lindegren, S. Frost, T. Bäck, E. Haglund, J. Elgqvist, H. Jensen, “Direct Procedure for the Production of 211At- Labeled Antibodies with an ε-Lysyl-3-(Trimethylstannyl) Benzamide”, J. Nucl. Med., vol. 49, no. 9, pp. 1537–1545, 2008.
    https://doi.org/10.2967/jnumed.107.049833
  51. K. Fujiki, Y. Kanayama, S. Yano, N. Sato, T. Yokokita, et al., “211At-labeled immunoconjugate via a one-pot three- component double click strategy: practical access to a- emission cancer radiotherapeutics’’, Chem. Sci., vol. 10, no. 7, pp. 1936–1944, 2019.
    https://doi.org/10.1039/c8sc04747b
  52. U.S. National Library of Medicine, ClinicalTrials.gov. "Search Results for astatine-211 and At-211". https://clinicaltrials.gov/search?term=astatine
    Retrieved on: Jan. 23, 2025
  53. https://www.cancer.gov/research/participate/clinical- trials-search/v?id=NCI-2020-06835&r=1
    Retrieved on: Jan. 04, 2025
  54. P. Albertsson, T. Bäck, K. Bergmark, A. Hallqvist, M. Johansson, E. Aneheim, S. Lindegren, C. Timperanza, K. Smerud, S. Palm, “Astatine-211 based radionuclide therapy: Current clinical trial landscape” Front.Med., vol. 6, no. 9, p. 1076210-1-15, 2023.
    https://doi.org/10.3389/fmed.2022.1076210
  55. J.G. Hamilton, P.W. Durbin, M.W. Parrott.,” Accumulation of astatine211 by thyroid gland in man”, Proc. Soc. Exp. Biol. Med., vol. 86, no.2, pp. 366–9, 1954.
    https://doi.org/10.3181/00379727-86-21100
  56. https://www.cost.eu/actions/CA19114/
    Retrieved on: Sep. 01, 2024
  57. Y. Feng and M. R. Zalutsky, “Production, purification and availability of 211At: term steps towards global access”, Nucl. Med. Biol., vol. 100-101, pp. 12-23, 2021.
    https://doi.org/10.1016/j.nucmedbio.2021.05.007
  58. https://www.isotopes.gov/WAC
    Retrieved on: Sep. 03, 2024
Paulina Apostolova, Jean Francois-Gestin, Sanja Vranjes-Djuric, Marija Arev, Emilija Janevik-Ivanovska, "Astatine-211 as an emerging radioisotope for Targeted Alpha Therapy (TAT)", RAD Conf. Proc., vol. 8, 2024, pp. 53-58; http://doi.org/10.21175/RadProc.2024.11
Medical Imaging

OPTIMIZATION OF THE ACCURACY OF THE ELECTRICAL IMPEDANCE TOMOGRAPHY IMAGES OF THE LUNG

Ivaylo Minev, Vedran Jukic, Teodora Gogova, Nikoleta Traykova

DOI: 10.21175/RadProc.2024.12

Received: 5 DEC 2024, Received revised: 3 MARCH 2025, Accepted: 10 MARCH 2025, Published online: 21 MARCH 2024

Electrical impedance tomography (EIT) is a non-invasive method for monitoring of lung ventilation at the bedside. To improve the personalization and increase the information value of the method, optimization of the accuracy of the lung EIT images must be achieved. The main goal of the study was to develop a methodology for individualized reconstruction of the EIT images. The investigation includes computer tomography (CT) and electrical impedance tomography (EIT) data of two mechanically ventilated trauma patients with pulmonary contusion, admitted to the Department of Anesthesiology and Intensive care, University hospital “St. George” (Plovdiv, Bulgaria). Following a CT scan analysis, a fem mesh is used for determination of the contour of the patient’s thorax. Subsequently the raw EIT data is reconstructed in the resulting individualized contour. A protocolized approach to the individual patient is created. As a result of a comparative analysis between the lung areas on the CT image and the reconstructed EIT image taken at the corresponding thoracic level, the spatial morphological sensitivity of the EIT is determined (% of overlapping conformity > 82%). Thus, overcoming the limitations for placing the EIT electrodes at different than initially recommended positions, enables the clinical application of EIT in conditions characterized by heterogeneously disseminated or solitary lesions occur. The personalized approach reveals the EIT potential to provide sufficient spatial resolution and image accuracy to support the optimization of mechanical ventilation, especially in case of heterogeneously disseminated or solitary lesions. It enables EIT practical application as a hybrid method for image diagnostics and monitoring of the pathophysiological changes in ventilation and perfusion in pulmonary contusion.
  1. S. Leonhardt, B. Lachmann, “Electrical impedance tomography: The holy grail of ventilation and perfusion monitoring?”, vol. 38, pp. 1917–1929, 2012.
    https://doi.org/10.1007/s00134-012-2684-z
  2. T. Muders, H. Luepschen, C. Putensen, “Impedance tomography as a new monitoring technique”, Curr Opin Crit Care, vol. 16, no. 3, pp. 269–275, 2010.
    https://doi.org/10.1097/MCC.0B013E3283390CBF
  3. J. M. Constantin, S. Perbet, J. Delmas, E. Futier, “Electrical impedance tomography: So close to touching the holy grail”, Critical Care, vol. 18, no. 164, 2014.
    https://doi.org/10.1186/cc13979
  4. B. Vogt et al., “Spatial and temporal heterogeneity of regional lung ventilation determined by electrical impedance tomography during pulmonary function testing”, J Appl Physiol, vol. 113, no. 7, pp. 1154–1161, 2012.
    https://doi.org/10.1152/japplphysiol.01630.2011
  5. R. Bhatia, G.M. Schmölzer, P.G. Davis, D.G. Tingay, ‘Electrical impedance tomography can rapidly detect small pneumothoraces in surfactant-depleted piglets’, Intensive Care Med, vol. 38, no. 2, pp. 308–315, 2012.
    https://doi.org/10.1007/S00134-011-2421-Z
  6. S. Pulletz et al., “Dynamics of regional lung aeration determined by electrical impedance tomography in patients with acute respiratory distress syndrome”, Multidiscip Respir Med, vol. 7, no. 6, 2012.https://doi.org/10.1186/2049-6958-7-44
  7. B. Vogt, Z. Zhao, P. Zabel, N. Weiler, I. Frerichs, “Regional lung response to bronchodilator reversibility testing determined by electrical impedance tomography in chronic obstructive pulmonary disease”, Am J Physiol Lung Cell Mol Physiol, vol. 311, pp. 8–19, 2016.
    https://doi.org/10.1152/ajplung.00463.2015.-Patients
  8. R.E. Serrano et al., “Use of electrical impedance tomography (EIT) for the assessment of unilateral pulmonary function”, Physiol Meas, vol. 23, no. 1, p. 211, 2002.
    https://doi.org/10.1088/0967-3334/23/1/322
  9. Z. Zhao, U. Müller-Lisse, I. Frerichs, R. Fischer, K. Möller, “Regional airway obstruction in cystic fibrosis determined by electrical impedance tomography in comparison with high resolution CT”, Physiol Meas, vol. 34, no. 11, 2013.
    https://doi.org/10.1088/0967-3334/34/11/N107
  10. Z. Zhao, D. Steinmann, I. Frerichs, J. Guttmann, K. Möller, “PEEP titration guided by ventilation homogeneity: a feasibility study using electrical impedance tomography”, Crit Care, vol. 14, no. 1, 2010.
    https://doi.org/10.1186/CC8860
  11. P. Blankman, D. Hasan, G.J. Erik, D. Gommers, “Detection of “best” positive end-expiratory pressure derived from electrical impedance tomography parameters during a decremental positive end-expiratory pressure trial”, Crit Care, vol. 18, no. 3, 2014.
    https://doi.org/10.1186/CC13866
  12. W.R.B. Lionheart, “EIT reconstruction algorithms: pitfalls, challenges and recent developments”, Physiol Meas, vol. 25, no. 1, pp. 125–142, 2004.
    https://doi.org/10.1088/0967-3334/25/1/021
  13. J. Karsten, T. Stueber, N. Voigt, E. Teschner, H. Heinze, “Influence of different electrode belt positions on electrical impedance tomography imaging of regional ventilation: A prospective observational study”, Crit Care, vol. 20, no. 1, 2016.
    https://doi.org/10.1186/s13054-015-1161-9
  14. S. Krueger-Ziolek, B. Schullcke, J. Kretschmer, U. Müller- Lisse, K. Möller, Z. Zhao, “Positioning of electrode plane systematically influences EIT imaging”, Physiol Meas, vol. 36, no. 6, pp. 1109–1118, 2015.
    https://doi.org/10.1088/0967-3334/36/6/1109
  15. J. Gao, S. Yue, J. Chen, H. Wang, “Classification of normal and cancerous lung tissues by electrical impendence tomography”, Biomed Mater Eng, vol. 24, no. 6, pp. 2229–2241, 2014.
    https://doi.org/10.3233/BME-141035
  16. F. Reifferscheid et al., “Regional ventilation distribution determined by electrical impedance tomography: Reproducibility and effects of posture and chest plane”, Respirology, vol. 16, no. 3, pp. 523–531, 2011.
    https://doi.org/10.1111/J.1440-1843.2011.01929.X
  17. C.J.C. Trepte et al., “Electrical impedance tomography (EIT) for quantification of pulmonary edema in acute lung injury”, Crit Care, vol. 20, no. 1, p. 6, 2016.
    https://doi.org/10.1186/s13054-015-1173-5
  18. F. Fu et al., “Use of electrical impedance tomography to monitor regional cerebral edema during clinical dehydration treatment”, PLoS One, vol. 9, no. 12, p. e113202, 2014.
    https://doi.org/10.1371/JOURNAL.PONE.0113202
  19. S. Hannan, M. Faulkner, K. Aristovich, J. Avery, M.C. Walker, D.S. Holder, “In vivo imaging of deep neural activity from the cortical surface during hippocampal epileptiform events in the rat brain using electrical impedance tomography”, Neuroimage, vol. 209, p. 116525, 2020.
    https://doi.org/10.1016/J.NEUROIMAGE.2020.116525
  20. J.M. Porcel, M. Azzopardi, C.F. Koegelenberg, F. Maldonado, N.M. Rahman, Y.C.G. Lee, ‘The diagnosis of pleural effusions”, Expert Rev Respir Med, vol. 9, no. 6, pp. 801–815, 2015.
    https://doi.org/10.1586/17476348.2015.1098535
  21. S.A. Paul Chubb and R.A. Williams, “Biochemical Analysis of Pleural Fluid and Ascites”, Clin Biochem Rev, vol. 39, no. 2, pp. 39-50, 2018, 2024.
    [Online]. Available:
    https://pmc.ncbi.nlm.nih.gov/articles/PMC6223608/
  22. P.W.A. Kunst et al., “Electrical impedance tomography in the assessment of extravascular lung water in noncardiogenic acute respiratory failure”, Chest, vol. 116, no. 6, pp. 1695–1702, 1999.
    https://doi.org/10.1378/CHEST.116.6.1695
  23. “Increasing positive end-expiratory pressure (re-) improves intraoperative respiratory mechanics and lung ventilation after prone positioning”, Br J Anaesth, vol. 116, no. 6, pp. 838–846, 2016.
    https://doi.org/10.1093/BJA/AEW115
  24. T. Becher, B. Vogt, M. Kott, D. Schädler, N. Weiler, I. Frerichs, “Functional Regions of Interest in Electrical Impedance Tomography: A Secondary Analysis of Two Clinical Studies”, PLoS One, vol. 11, no. 3, 2016.
    https://doi.org/10.1371/JOURNAL.PONE.0152267
Ivaylo Minev, Vedran Jukic, Teodora Gogova, Nikoleta Traykova, "Optimization of the accuracy of the electrical impedance tomography images of the lung", RAD Conf. Proc., vol. 8, 2024, pp. 59-63; https://doi.org/10.21175/RadProc.2024.12
Covid 19

FEAR OF COVID-19 AMONG BULGARIAN HEALTHCARE WORKERS AND RECOVERED PATIENTS DURING THE COVID-19 PANDEMIC

Miroslava Petkova, Emil Nikolov

DOI: 10.21175/RadProc.2024.13

Received: 4 NOV 2024, Received revised: 21 FEB 2025, Accepted: 28 FEB 2025, Published online: 30 MARCH 2025

The COVID-19 pandemic made a significant impact on global psychological wellbeing. To investigate the impact of COVID-19 on different groups’ behavior, the current study assessed fear of COVID-19, anxiety, depression and sleep quality among medical professionals and patients. The study was proceeding during the period February- June 2021 following the highest number of pandemic-related deaths in Bulgaria. The fear predicted elevated levels of anxiety, depression, and sleep quality were assessed. Purpose: The aim of the study is to assess fear of COVID-19 among frontline healthcare workers in comparison with patients, recovered after the disease. Materials and Methods: The study was a questionnaire-based analytical incorporating four questionnaire-based tools. First questionnaire was used to assess fear of COVID-19. The second was for sleep disturbances assessment, the third questionnaire was used to assess general depression and the forth - anxiety. Results: In terms of sleep status, their average PSQI score was 7.6 (SD = 3.5) points, with a range from 0 to 16 points. According to the cut point of PSQI, 58(42.9%) of medical professionals were suffering from sleep disturbances. On the contrary - average PSQI score was 3.4 (SD = 2.6) points, with a range from 0 to 16 points. According to the cut point of PSQI, 43(41.2%) of recovered patients were suffering from sleep disturbances. Anxiety, depression and fear of COVID-19 were more common in healthcare workers than in patients. Conclusions: 81.9% of female nurses shared sleep disturbances comparing with 15.1% of male medical professionals and 41.2% of male and female patients. During the epidemic period, particular attention must be paid to the mental well-being and sleep quality
  1. S.A. Lee, “Coronavirus Anxiety Scale: A brief mental health screener for COVID-19 related anxiety”, Death Studies, vol. 44, no. 7, pp. 393–401, 2020.
    https://doi.org/10.1080/07481187.2020.1748481
  2. S. Cabarkapa, S.E. Nadjidai, J. Murgier, “The psychological impact of COVID-19 and other viral epidemics on frontline HWS and ways to address it: A rapid systematic review”, Brain, Behavior, & Immunity - Health, vol. 8, pp. 100144 – 1 -10, 2020.
    https://doi.org/10.1016/j.bbih.2020.100144
  3. K. Vanhaecht, D. Seys, L. Bruyneel., B. Cox, G. Kaesemans, M. Cloet, K. Van Den Broeck, O. Cools, A. De Witte, K. Lowet, et al., “COVID-19 is having a destructive impact on health-care workers’ mental well-being”, International Journal for Quality in Health Care, vol. 33, no. 1, pp. mzaa158-1-6, 2021.
    https://doi.org/10.1093/intqhc/mzaa158
  4. U. Jain, “Risk of COVID-19 due to Shortage of Personal Protective Equipment”, Cereus., vol. 12, no. 6, pp. e8837-1-5, 2020.
    https://doi.org/10.7759/cureus.8837
  5. A. Anand, A. Gupta, S. Sing, S. Pyakurel, R. Karkee, P. Pyakurel, “Knowledge and attitude regarding the COVID-19 pandemic among undergraduate health science students of Nepal: An online survey”, SAGE Open Med., vol. 11, pp. 1-14, 2023.
    https://doi.org/10.1177/20503121231196703
  6. S. Burrowe, S. Casey, N. Pierre-Josep, S. Talbot, T. Hall, N. Christian-Brathwaite, M. Del-Carmen, C. Garofalo, B. Lundberg, P. Mehta, J. Mottl-Santiago, E. Schechter-Perkins, A. Weber, C. Yarrington, R. Perkins. “COVID-19 pandemic impacts on mental health, burnout, and longevity in the workplace among healthcare workers: A mixed methods study”, J. Interprof. Educ. Pract., vol. 32, pp. 100661-1-9, 2023.
    https://doi.org/10.1016/j.xjep.2023.100661
  7. E. Nagle, S. Šuriņa, I. Griškēviča, “Healthcare Workers’ Moral Distress during the COVID-19 Pandemic: A Scoping Review”, Soc. Sci., vol. 12, no. 7, pp. 371-1-17, 2023.
    https://doi.org/10.3390/socsci12070371
  8. SeyedAhmad SeyedAlinaghi, et al., “Social stigma during COVID-19: A systematic review”, SAGE Open Med., vol. 11, p. 20503121231208273, 2023.
    https://doi.org/10.1177/20503121231208273
  9. D. Buysse, C. Reynolds 3rd, T. Monk, S. Berman, D. Kupfer, “The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research”, Psychiatry Res., vol. 28, no. 2, pp. 193-213, 1989.
    https://doi.org/10.1016/0165-1781(89)90047-4
  10. G.A. Palmer, A. Dahlstrom, A. Kingwell, J. Van Sickle, J. (2017). Beck Anxiety Inventory. In: Zeigler-Hill, V., Shackelford, T. (eds) Encyclopedia of Personality and Individual Differences. Springer, Cham.
    https://doi.org/10.1007/978-3-319-28099-8_5-1
  11. Z.E. García-Batista, K. Guerra-Peña, A. Cano-Vindel, S.X. Herrera-Martínez, L.A. Medrano “Validity and reliability of the Beck Depression Inventory (BDI-II) in general and hospital population of Dominican Republic”, PLOS One, vol. 13, no. 6, pp. e0199750-1- 12, 2018.
    https://doi.org/10.1371/journal.pone.0199750
  12. G. Mertens, S. Duijndam, T. Smeets, P. Lodder, “The latent and item structure of COVID-19 fear: A comparison of four COVID-19 fear questionnaires using SEM and network analyses”, Journal of Anxiety Disorders, vol. 81, pp. 102415-1-9, 2021.
    https://doi.org/10.1016/j.janxdis.2021.102415
  13. N.B. Elsharkawy, E.M. Abdelaziz “Levels of fear and uncertainty regarding the spread of coronavirus disease (COVID-19) among university students”, Perspect. Psychiatr. Care, vol. 57, pp. 1356–1364, 2020.
    https://doi.org/10.1111/ppc.12698
  14. A. Metin, E.S. Erbiçer, S. Şen, A. Çetinkaya, “Gender and COVID-19 related fear and anxiety: A meta- analysis”, J. Affect Disord., vol. 310, pp. 384-395, 2022.
    https://doi.org/10.1016/j.jad.2022.05.036
  15. Y. Zolotov, A. Reznik, S. Bender, et al., “COVID-19 Fear, Mental Health, and Substance Use Among Israeli University Students”, Int. J. Ment. Health Addiction, vol. 20, pp. 230–236, 2022.
    https://doi.org/10.1007/s11469-020-00351-8
  16. F. Bakioğlu, O. Korkmaz, H. Ercan, “Fear of COVID- 19 and Positivity: Mediating Role of Intolerance of Uncertainty, Depression, Anxiety, and Stress”, Int. J. Ment. Health Addiction, vol. 19, no. 6, pp. 2369-2382, 2021.
    https://doi.org/10.1007/s11469-020-00331-y
Miroslava Petkova, Emil Nikolov, "Fear of COVID-19 among Bulgarian healthcare workers and recovered patients during the COVID-19 pandemic", RAD Conf. Proc., vol. 8, 2024, pp. 64-67; http://doi.org/10.21175/RadProc.2024.13
Biochemistry

FATTY ACID ENZYME ACTIVITIES AND RISK OF DIABETES MELLITUS

Šaćira Mandal

DOI: 10.21175/RadProc.2024.14

Received: 21 OCT 2024, Received revised: 28 MARCH 2025, Accepted: 22 APRIL 2025, Published online: 16 MAY 2025

The prevalence of diabetes mellitus, especially type 2 diabetes (T2D), is high worldwide and there is an ongoing challenge to find potential biomarkers that could predict the onset of diabetes and provide insight into possible mechanisms for its development. Previously published data have shown that the composition and concentrations of free fatty acids (FFA) in plasma/serum are associated with the occurrence and risk of developing diabetes. Recent evidence suggests that the composition and content of free fatty acids are influenced by many factors, such as age, sex, ethnicity, dietary habits of the subjects and their genetic predisposition. Furthermore, endogenous synthesis of FFA and the activities of the enzymes, desaturase and elongase, involved in their metabolism are also associated with the development of diabetes. The purpose of this study was to evaluate the association between different type of free fatty acids and activity of fatty acid enzymes and risk of diabetes. In 145 individuals (aged 30-70 years, both sex: 92 males and 111 females) of which 54 T2D patients, 45 prediabetes patients, 24 newly diagnosed T2D patients and 81 healthy controls, delta 6 desaturase (D6), delta 5 desaturase (D5D), stearoyl CoA-desaturase-1/2 (SCD-1/2) and elongase (ELOVL) activity were estimated from product/precursor FAs ratios (D6D=C18:3n-6/C18:2n-6; D5D=C20:4n-6/C20:3n-6; SCD-1=C16:1n-7/C16:0 and SCD-2=C18:1n-9/C18:0; and ELOVL=C18:1n-7/C16:1n-7, respectively). The clinical parameters including fasting plasma glucose (FPG), glycosylated hemoglobin (HbA1c), lipid profile and hepatic enzymes were measured by standard analytical methods while the concentrations of individual FFAs were determined by gas chromatography. The results showed that higher concentrations of six FFAs in plasma were significant associated with increasing risk factors of T2D including fasting glucose levels, lipid profile and fatty acid enzymes activity (C14:0 p<0.001; C14:1 p<0.01; C16:1 p<0.001; C18:0 p<0.001; C18:2 p<0.05; C20:4 p<0.01, respectively). Furthermore, the activities of D6D, SCD-1 and ELOVL, and elevated levels of these six free fatty acids, were strongly associated with risk factors in the development of T2D in humans. Therefore, both fatty acid enzymes and individual FFAs could be used as biomarkers in the early diagnosis of T2D and subsequent treatment of future complications of the disease.
  1. J.P.G. Poisson, S.C. Cunnane, “Long-chain fatty acid metabolism in fasting and diabetes: relation between altered desaturase activity and fatty acid composition”, J. Nutr. Biochem., vol. 2, no. 2, pp. 60-70, 1991.
    https://doi.org/10.1016/0955-2863(91)9x0030-9
  2. J. Kröger, M.B. Schulze, “Recent insights into the relation of Δ5 desaturase and Δ6 desaturase activity to the development of type 2 diabetes”, Current Opinion in Lipidology, vol. 23, no. 1, pp. 4-10, 2012.
    https://doi.org/10.1097/mol.0b013e32834d2dc5
  3. S. Yuan, S.C. Larsson, “Association of genetic variants related to plasma fatty acids with type 2 diabetes mellitus and glycaemic traits: a Mendelian randomisation study”, Diabetologia, vol. 63, no. 1, pp. 116-123, 2020.
    https://doi.org/10.1007/s00125-019-05019-0
  4. N. Li, Y. Qiu, Y. Wu, M. Zhang, Z. Lai, Q. Wang, Y. Du, L. Guo, S. Liu, Z. Li, “Association of serum total fatty acids with type 2 diabetes”, Clinica Chimica Acta, vol. 500, pp. 59-68, 2020.
    https://doi.org/10.1016/j.cca.2019.09.018
  5. S.S. Shetty, N.S. Kumari, “Fatty acid desaturase 2 (FADS 2) rs174575 (C/G) polymorphism, circulating lipid levels and susceptibility to type-2 diabetes mellitus”, Sci. Rep., vol. 11, no. 1, pp. 13151 -1-8, 2021.
    https://doi.org/10.1038/s41598-021-92572-7
  6. W.T. Friedewald, R.I. Levy, D.S. Fredrickson, “Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge”, Clin Chem., vol. 18, no. 6, pp. 499-502, 1972.
    https://doi.org/10.1093/clinchem/18.6.499
  7. International Diabetes Federation. Diabetes Atlas — 10th Edition. Diabetes Atlas, 2021. https://diabetesatlas.org/atlas/tenth-edition
  8. American Diabetes Association. Standards of medical care in diabetes—2021, Diabetes Care, 1; vol. 44 (Suppl.1), pp. S15–S33, 2021.
    https://doi.org/10.2337/dc21-S002
  9. E.G. Bligh, W. J. Dyer, “A rapid method of total lipid extraction and purification”, Canadian Journal of Biochemistry and Physiology, vol. 37, no. 8, pp. 911- 917, 1959.
    https://cdnsciencepub.com/doi/pdf/10.1139/o59-099
  10. G. Lepage, C.C. Roy, “Specific methylation of plasma nonesterified fatty acids in a one-step reaction”, J. Lipid Res., vol. 29, no. 2, pp. 227-235, 1988.
    https://doi.org/10.1016/S0022-2275(20)38553-9
  11. V. Lamantia, S. Bissonnette, V. Provost, M. Devaux, Y. Cyr, C. Daneault, C.D. Rosiers, M. Faraj, “The association of polyunsaturated fatty Acid δ-5- Desaturase Activity with Risk Factors for Type 2 Diabetes Is Dependent on Plasma ApoB-Lipoproteins in Overweight and Obese Adults”, J. Nutr., vol. 149, no. 1, pp. 57-67, 2019.
    https://doi.org/10.1093/jn/nxy238
  12. I.S.A. Sobczak, A.C. Blindauer, J.A. Stewart, “Changes in plasma free fatty acids associated with type-2 diabetes”, Nutrients, vol. 11, no. 9, pp. 1-42, 2019.
    https://doi.org/10.3390/nu11092022
  13. M.A. Lankinen, A. Stančáková, M. Uusitupa, J. Ågren, J. Pihlajamäki, J. Kuusisto, U. Schwab, M. Laakso, “Plasma fatty acids as predictors of glycaemia and type 2 diabetes”, Diabetologia, vol. 58, no. 11, pp. 2533- 2544, 2015.
    https://doi.org/10.1007/s00125-015-3730-5
  14. A.M. Hodge, D.R. English, K. O’Dea, A.J. Sinclair, M. Makrides, R.A. Gibson, G.G. Giles, “Plasma phospholipid and dietary fatty acids as predictors of type 2 diabetes: interpreting the role of linoleic acid”, Am J. Clin. Nutr., vol. 86, pp. 189–97, 2007.
    https://pubmed.ncbi.nlm.nih.gov/17616780/
  15. G. Sartore, A. Lapolla, R. Reitano, S. Zambon, G. Romanato, R. Marin, C. Cosma, E. Manzato, D. Fedele, “Desaturase activities and metabolic control in type 2 diabetes,” Clinical Trial Prostaglandins Leukot Essent Fatty Acids. vol. 79, no. 1, pp. 55-8, 2008.
    https://doi.org/10.1016/j.plefa.2008.07.001
  16. S. Mandal, “New molecular biomarkers in precise diagnosis and therapy of type 2 diabetes”, Health Technol., vol. 10, pp. 601–608, 2020.
    https://doi.org/10.1007/s12553-019-00385-6
  17. E. Fragopoulou, Detopoulou P, Alepoudea E, Nomikos T, Kalogeropoulos N, Antonopoulou S, “Associations between red blood cells fatty acids, desaturases indices and metabolism of platelet activating factor in healthy volunteers”, Prostaglandins Leukot Essent Fatty Acids, vol.164, 102234, 2021.
    https://pubmed.ncbi.nlm.nih.gov/33373961/
  18. E. Warensjö, M. Rosell, M.L. Hellenius, B. Vessby, U. De Faire, U. Risérus, “Associations between estimated fatty acid desaturase activities in serum lipids and adipose tissue in humans: links to obesity and insulin resistance”, Lipids Health Dis., vol. 8, no. 37, pp. 1-6, 2009.
    https://doi.org/10.1186/1476-511x-8-37
  19. Y. Wang, D. Botolin, J. Xu, B. Christian, E. Mitchell, B. Jayaprakasam, M.G. Nair, J.M. Peters, J.V. Busik, L.K. Olson, D.B. Jump, “Regulation of hepatic fatty acid elongase and desaturase expression in diabetes and obesity”, J Lipid Res., vol. 47, no. 9, pp. 2028-2041, 2006.
    https://doi.org/10.1194/jlr.m600177-jlr200
  20. I. Šarac, J. Debeljak-Martačić, M. Takić, V. Stevanović, J. Milešević, M. Zeković, T. Popović, J. Jovanović, N.K. Vidović, “Associations of fatty acids composition and estimated desaturase activities in erythrocyte phospholipids with biochemical and clinical indicators of cardiometabolic risk in non-diabetic Serbian women: the role of level of adiposity”, Front. Nutr., vol. 10, 1065578, 2023.
    https://doi.org/10.3389/fnut.2023.1065578
  21. T. Matsuzaka, “Role of fatty acid elongase Elovl6 in the regulation of energy metabolism and pathophysiological significance in diabetes”, Diabetol Int., vol. 12, no. 1, pp. 68-73, 2021.
    https://doi.org/10.1007/s13340-020-00481-3
  22. D.S. Wismayer, M.C. Laurenti, Y. Song, A.M. Egan, A.A. Welch, K.R. Bailey, C. Cobelli, C.D. Man, M.D. Jensen, A. Vella, “Effects of acute changes in fasting glucose and free fatty acid concentrations on indices of β-cell function and glucose metabolism in subjects without diabetes”, Am J Physiol Endocrinol Metab, vol. 325, pp. E119–E131, 2023.
    https://doi.org/10.1152/ajpendo.00043.2023
  23. L-P. Jiang, H-Z. Sun, “Long-chain saturated fatty acids and its interaction with insulin resistance and the risk of nonalcoholic fatty liver disease in type 2 diabetes in Chinese”, Front. Endocrinol., vol. 13, 1051807, 2022.
    https://doi.org/10.3389/fendo.2022.1051807
  24. W. Qureshi, I.D. Santaren, A.J. Hanley, S.M. Watkins, C. Lorenzo, L.E. Wagenknecht, “Risk of diabetes associated with fatty acids in the de novo lipogenesis pathway is independent of insulin sensitivity and response: the Insulin Resistance Atherosclerosis Study (IRAS)”, BMJ Open Diabetes Res Care, vol. 7, no. 1, e000691-1-8, 2019.
    https://doi.org/10.1136/bmjdrc-2019-000691
  25. M.A. Montanaro, M.S. González, A.M. Bernasconi, R.R. Brenner, “Role of liver X receptor, insulin and peroxisome proliferator activated receptor alpha on in vivo desaturase modulation of unsaturated fatty acid biosynthesis”, Lipids., vol. 42, no. 3, pp. 197-210, 2007.
    https://doi.org/10.1007/s11745-006-3006-4
  26. K.M. Brown, S. Sharma, E. Baker, W. Hawkins, M. van der Merwe, M.J. Puppa, “Delta-6-desaturase (FADS2) inhibition and omega-3 fatty acids in skeletal muscle protein turnover”, Biochem. Biophys. Rep., vol. 18: 100622-1-7, 2019.
    https://doi.org/10.1016/j.bbrep.2019.100622
  27. S. Klein, A. Gastaldelli, H. Yki-Järvinen, P.E. Scherer, “Why does obesity cause diabetes?”, Cell Metab., vol. 34, no. 1, pp. 11-20, 2022.
    https://doi.org/10.1016/j.cmet.2021.12.012
  28. X. Zhu, L. Chen, J. Lin, M. Ba, J. Liao, P. Zhang, C. Zhao, “Association between fatty acids and the risk of impaired glucose tolerance and type 2 diabetes mellitus in American adults: NHANES 2005-2016”, Nutr Diabetes, vol. 13, no. 8, 2023.
    https://doi.org/10.1038/s41387-023-00236-4
  29. L. Huang, J.S. Lin, I.M. Aris, G. Yang, W.Q. Chen, L.J. Li, “Circulating saturated fatty acids and incident type 2 diabetes: a systematic review and meta-analysis”, Nutrients, vol. 11, no. 5, 998, 2019.
    https://doi.org/10.3390/nu11050998
  30. N. Stefan, A. Peter, A. Cegan, H. Staiger, J. Machann, F. Schick, C.D. Claussen, A. Fritsche, H.U. Häring, E. Schleicher, “Low hepatic stearoyl-CoA desaturase 1 activity is associated with fatty liver and insulin resistance in obese humans”, Diabetologia, vol. 51, no. 4, pp. 648-56, 2008.
    https://doi.org/10.1007/s00125-008-0938-7
  31. K. Bódis, S. Kahl, M.C. Simon, Z. Zhou, H. Sell, B. Knebel, A. Tura, K. Strassburger, V. Burkart, K. Müssig, D. Markgraf, H. Al-Hasani, J. Szendroedi, M. Roden, “GDS Study Group, Reduced expression of stearoyl-CoA desaturase-1, but not free fatty acid receptor 2 or 4 in subcutaneous adipose tissue of patients with newly diagnosed type 2 diabetes mellitus”, Nutr. Diabetes., vol. 8, pp. 49-1-9, 2018.
    https://doi.org/10.1038/s41387-018-0054-9
  32. D. Gallagher, M. Visser, D. Sepúlveda, R.N. Pierson, T. Harris, S.B. Heymsfield, “How useful is body mass index for comparison of body fatness across age, sex, and ethnic groups?”, Am J Epidemiol., vol. 143, no. 3, pp. 228-39, 1996.
    https://doi.org/10.1093/oxfordjournals.aje.a008733
  33. T. Takato, K.Iwata, C. Murakami, Y. Wada, F. Sakane, “Chronic administration of myristic acid improves hyperglycaemia in the Nagoya-Shibata-Yasuda mouse model of congenital type 2 diabetes”, Diabetologia, vol. 60, no. 10, pp. 2076-2083, 2017.
    https://doi.org/10.1007/s00125-017-4366-4
Šaćira Mandal, "Fatty acid enzyme activities and risk of diabetes mellitus", RAD Conf. Proc., vol. 8, 2024, pp. 68-75; http://doi.org/10.21175/RadProc.2024.14
Health and Environment

CALCULATIONS OF MAGNETIC FLUX DENSITY IN THE VICINITY OF THE 10/0.4 KV SUBSTATIONS WITH 0.4 KV BUSBARS

Maja Grbić, Aldo Canova

DOI: 10.21175/RadProc.2024.15

Received: 26 NOV 2024, Received revised: 12 MAY 2025, Accepted: 23 MAY 2025, Published online: 20 JUNE 2025

The paper addresses a very important topic of the assessment of the general public exposure to magnetic fields in the vicinity of 10/0.4 kV substations. Previous testing results have shown that 10/0.4 kV substations located inside buildings can be a significant source of magnetic field in the rooms located next to them. The levels of magnetic flux density in these cases primarily depend on the transformer type and its rated power as well as on the equipment disposition in the substation. In the cases of substations with oil transformers, the dominant source of magnetic flux density in the environment are usually the 0.4 kV busbars, which connect the transformer and 0.4 kV switchboard. For that reason, the paper focuses on this type of 10/0.4 kV substations. The magnetic flux density levels are determined by calculations which are based on the model of 0.4 kV busbars. The busbars are modeled as straight-line conductors. The calculations are carried out for substations with 400 kVA, 630 kVA and 1000 kVA transformers, which are most commonly used in residential and other buildings. The calculations are repeated for different distances from the busbars and between them and for different values of the transformer rated load. The objective of the performed analysis is to reach general conclusions on the levels of magnetic flux density that may occur in the vicinity of the abovementioned substations, as well as the assessment of compliance with the regulations on the protection of the general public from electromagnetic fields. The obtained results have shown that in some cases the magnetic field levels can significantly exceed the prescribed reference levels. For that reason, the distances from the busbars at which the reference levels will not be exceeded were calculated in the paper for different rated powers of the transformers. The distances calculated in this paper can be used during the design of new substations inside buildings, in order to avoid the appearance of high magnetic field values.
  1. International Commission on Non‐Ionizing Radiation Protection (ICNIRP), “ICNIRP guidelines for limiting exposure to time‐varying electric, magnetic, and electromagnetic fields (up to 300 GHz)”, Health Phys., vol. 74, no. 4, pp. 494–522, 1998.
  2. 1999/519/EC, “Council recommendation of 12 July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz)”, OJ L, 1999.
  3. 3. International Commission on Non‐Ionizing Radiation Protection (ICNIRP), “ICNIRP guidelines for limiting exposure to time‐varying electric and magnetic fields (1 Hz – 100 kHz)”, Health Phys., vol. 99, no. 6, pp. 818–836, 2010.
  4. Влада Републике Србије. (15. мај 2009.). Закон о заштити од нејонизујућих зрачења, Службени гласник Републике Србије бр. 36/09. (Government of the Republic of Serbia. (May 15, 2009). Law on Protection from Non-Ionizing Radiation, Official Gazette of Republic of Serbia No. 36/09).
  5. Влада Републике Србије. (16. децембар 2009.). Правилник о границама излагања нејонизујућим зрачењима, Службени гласник Републике Србије бр. 104/09. (Government of the Republic of Serbia. (Dec. 16, 2009). Rulebook on Limits of Exposure to Non- Ionizing Radiation, Official Gazette of Republic of Serbia No. 104/09).
  6. Влада Републике Србије. (16. децембар 2009.). Правилник о изворима нејонизујућих зрачења од посебног интереса, врстама извора, начину и периоду њиховог испитивања, Службени гласник Републике Србије бр. 104/09 (Government of the Republic of Serbia. (Dec. 16, 2009). Rulebook on Sources of Non-Ionizing Radiation of Special Interest, Types of Sources, Methods and Frequentness of Their Testing, Official Gazette of Republic of Serbia No. 104/09).
  7. Governo della Repubblica Italiana. (22 febbraio 2001). “Legge quadro sulla protezione dalle esposizioni a campi elettrici, magnetici ed elettromagnetici”, Legge n° 36 – Legge che rimanda l’applicazione ai decreti applicativi: DPCM 8 luglio 2003. (Government of the Republic of Italy. (Feb. 22, 2001). “Framework law on protection from exposure to electric, magnetic and electromagnetic fields”, Law No. 36 – Law that refers the application to the implementing decrees: Prime Ministerial Decree of 8 July 2003.).
  8. Governo della Repubblica Italiana. (8 luglio 2003). DPCM 8 luglio 2003, “Fissazione dei limiti di esposizione, dei valori di attenzione e degli obbiettivi di qualità per la protezione della popolazione dalle esposizioni ai campi elettrici e magnetici alla frequenza di rete (50 Hz) generati da elettrodotti. (Government of the Republic of Italy. (July 8, 2003). Prime Ministerial Decree of 8 July 2003, “Establishing exposure limits, attention values and quality objectives for the protection of the population from exposure to electric and magnetic fields at the network frequency (50 Hz) generated by power lines.).
  9. C. Brabant et al., “Exposure to magnetic fields and childhood leukemia: A systematic review and metaanalysis of case-control and cohort studies”, Rev. Environ. Health, vol. 38, no. 2, pp. 229–253, 2022.
    https:// doi.org/10.1515/reveh-2021-0112.
  10. C. Malagoli et al., “Residential exposure to magnetic fields from high-voltage power lines and risk of childhood leukemia”, Environ. Res., vol. 232. article 116320, 2023.
    https://doi.org/10.1016/j.envres. 2023.116320.
  11. Mitigation techniques of power frequency magnetic fields originated from electric power systems, Working Group C4.204, CIGRE, Tech. Rep., 2009.
  12. M. Grbić et al., “Mitigation of Low Frequency Magnetic Field Emitted by 10/0.4 kV Substation in the School”, Int. J. Numer. Model.: Electron. Netw. Devices Fields, vol. 38, iss.2, 2025.
    http://doi.org/10.1002/jnm.70015.
  13. J.C. Bravo-Rodríguez, J.C. Del-Pino-López, P. Cruz- Romero, “A survey on optimization techniques applied to magnetic field mitigation in power systems”, Energies, vol. 12, no. 7, article 1332, 2019.
  14. D. Bavastro et al., “Magnetic field mitigation at power frequency: design principles and case study”, IEEE Trans. Ind. Appl., vol. 51, no. 3, pp. 2009–2016, 2015.
    http://doi.org/10.1109/TIA.2014.2369813.
  15. J. C. del-Pino-López, L. Giaccone, A. Canova, P. Cruz Romero, “Design of active loops for magnetic field mitigation in MV/LV substation surroundings, Electr. Power Syst. Res., vol. 119, pp 337–344, 2015,
    http://doi.org/10.1016/j.epsr.2014.10.019.
  16. M. Grbić, A. Pavlović, “Practical Application of Technique for Reducing Levels of Magnetic Field Emitted by 10/0.4 kV Substationˮ, The 23 rd International Conference and Exhibition on Electricity Distribution – CIRED, Lyon, France, 2015, Paper No. 1541.
  17. M. Grbić, A. Canova, L. Giaccone, “Magnetic Field in an Apartment Located above 10/0.4 kV Substation: Levels and Mitigation Techniquesˮ, The 24 th International Conference and Exhibition on Electricity Distribution – CIRED, Glasgow, Scotland, 2017, Paper No. 1230, http://doi.org/10.1049/oap-cired.2017.1230.
  18. М. Грбић, А. Павловић, „Анализа нивоа магнетске индукције у зонама повећане осетљивости изнад трансформаторских станица напонског нивоа 10/0,4 kVˮ, XIV саветовање о електродистрибутивним мрежама Србије са регионалним учешћем, Koпаоник, Република Србија, 2024. године, Зборник радова, R-1.17. (M. Grbić, A. Pavlović, “Analysis of Magnetic Flux Density Levels in the Increased Sensitivity Areas Located above the 10/0.4 kV Substationsˮ, The 14 th Conference on Electricity Distribution Networks of Serbia with Regional Participation, Kopaonik, the Republic of Serbia, 2024, Proceedings, R-1.17.)
  19. EN 50413:2019, Basic standard on measurement and calculation procedures for human exposure to electric, magnetic and electromagnetic fields (0 Hz – 300 GHz).
  20. EN 61786:2014, Measurement of DC magnetic, AC magnetic and AC electric fields from 1 Hz to 100 kHz with regard to exposure of human beings – Part 1: Requirements for measuring instruments.
  21. IEC 61786:2014, Measurement of DC magnetic, AC magnetic and AC electric fields from 1 Hz to 100 kHz with regard to exposure of human beings – Part 2: Basic standard for measurements.
  22. EN 62110:2009, Electric and magnetic field levels generated by AC power systems – Measurement procedures with regard to public exposure.
  23. MAGIC – Magnetic induction calculation software,
    https://beshielding.com/en/shielding/magic/.
Maja Grbić, Aldo Canova, "Calculations of magnetic flux density in the vicinity of the 10/0.4 kV substations with 0.4 kV busbars", RAD Conf. Proc., vol. 8, 2024, pp. 76-82; http://doi.org/10.21175/RadProc.2024.15
Health and Environment

CALCULATIONS OF ELECTRIC AND MAGNETIC FIELDS AT THE LOCATION OF THE INTERSECTION OF TWO OVERHEAD POWER LINES

Maja Grbić, Stefan Obradović, Aleksandar Pavlović

DOI: 10.21175/RadProc.2024.16

Received: 26 NOV 2024, Received revised: 13 MAY 2025, Accepted: 25 MAY 2025, Published online: 20 JUNE 2025

The paper is related to an important topic of the exposure of the general public to electric and magnetic fields in the vicinity of transmission overhead power lines. The analysis is carried out for the real situation where there is an intersection of the planned 110 kV double-circuit overhead power line with the existing 400 kV line. The analysis is based on the results of electric field strength and magnetic flux density calculations. The calculations are carried out using a software based on the Partial Element Equivalent Circuit numerical method. The results obtained by using this software were previously verified by comparing them with the results obtained with the model based on infinite straight-line conductors, for the case when there is only one power line. During the analysis of electric and magnetic field calculation results at the location of the intersection, the influence of different phase sequences on the 110 kV line is also analyzed. All the results obtained by calculations are compared with the reference levels prescribed by the legislation on protection of the general public from electromagnetic fields. The method presented in the paper can be used when it is necessary to analyze the levels of electric and magnetic fields at the location of the intersection of the overhead power line which is planned for the construction with an existing overhead line and to carry out an assessment of compliance of the field levels with the prescribed limits.
  1. Technical guide for measurement of low frequency electric and magnetic fields near overhead power lines, CIGRE Working Group C4.203, 2009.
  2. Mitigation techniques of power frequency magnetic fields originated from electric power systems, CIGRE Working Group C4.204, 2009.
  3. Characterisation of ELF magnetic fields, CIGRE Working Group C4.205, 2007.
  4. Responsible management of electric and magnetic fields, CIGRE Working Group C3.19, 2020.
  5. International Commission on Non‐Ionizing Radiation Protection (ICNIRP), “ICNIRP guidelines for limiting exposure to time‐varying electric, magnetic, and electromagnetic fields (up to 300 GHz)”, Health Phys., vol. 74, no. 4, pp. 494–522, 1998.
  6. 6. European Union. (Jul. 12, 1999). 1999/519/EC: Council recommendation of 12 July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz), OJ L. Retrieved from:
    https://eur-lex.europa.eu/legal- content/EN/TXT/?uri=CELEX:31999H0519 Retrieved on: Apr. 24, 2025.
  7. International Commission on Non‐Ionizing Radiation Protection (ICNIRP), “ICNIRP guidelines for limiting exposure to time‐varying electric and magnetic fields (1 Hz – 100 kHz)”, Health Phys., vol. 99, no. 6, pp. 818–836, 2010.
  8. Влада Републике Србије. (15. мај 2009.). Закон о заштити од нејонизујућих зрачења, Службени гласник Републике Србије бр. 36/09. (Government of the Republic of Serbia. (May 15, 2009). Law on Protection from Non-Ionizing Radiation, Official Gazette of Republic of Serbia No. 36/09) Retrieved from:
    https://www.ekologija.gov.rs/dokumenta/zastita-od- nejonizujucih-zracenja/zakoni Retrieved on: Apr. 24, 2025
  9. Влада Републике Србије. (16. децембар 2009.). Правилник о границама излагања нејонизујућим зрачењима, Службени гласник Републике Србије бр. 104/09. (Government of the Republic of Serbia. (Dec. 16, 2009). Rulebook on Limits of Exposure to Non- Ionizing Radiation, Official Gazette of Republic of Serbia No. 104/09) Retrieved from:
    https://www.ekologija.gov.rs/dokumenta/zastita-od- nejonizujucih-zracenja/pravilnici
    Retrieved on: Apr. 24, 2025
  10. Влада Републике Србије. (16. децембар 2009.). Правилник о изворима нејонизујућих зрачења од посебног интереса, врстама извора, начину и периоду њиховог испитивања, Службени гласник Републике Србије бр. 104/09 (Government of the Republic of Serbia. (Dec. 16, 2009). Rulebook on Sources of Non-Ionizing Radiation of Special Interest, Types of Sources, Methods and Frequentness of Their Testing, Official Gazette of Republic of Serbia No. 104/09) Retrieved from:
    https://www.ekologija.gov.rs/dokumenta/zastita-od- nejonizujucih-zracenja/pravilnici
    Retrieved on: Apr. 24, 2025
  11. Basic standard on measurement and calculation procedures for human exposure to electric, magnetic and electromagnetic fields (0 Hz – 300 GHz), EN 50413, 2019.
  12. Measurement of DC magnetic, AC magnetic and AC electric fields from 1 Hz to 100 kHz with regard to exposure of human beings – Part 1: Requirements for measuring instruments, IEC 61786, 2013.
  13. Measurement of DC magnetic, AC magnetic and AC electric fields from 1 Hz to 100 kHz with regard to exposure of human beings – Part 2: Basic standard for measurements, IEC 61786, 2014.
  14. Electric and magnetic field levels generated by AC power systems – Measurement procedures with regard to public exposure, EN 62110, 2009.
  15. Electric Power Research Institute (EPRI), “Electric and magnetic fields”, in EPRI AC Transmission Line Reference Book – 200 kV and Above, Third Edition, Palo Alto, CA, USA, EPRI, 2005, pp. 7.1–7.118.
  16. Power lines: Demonstrating compliance with EMF public exposure guidelines: A voluntary code of practice. Government of the UK, Department of Energy & Climate Change, London, UK, 2012. Retrieved from:
    https://assets.publishing.service.gov.uk/media/5a7967 99ed915d07d35b5397/1256-code-practice-emf-public- exp-guidelines.pdf
    Retrieved on: Apr. 24, 2025
  17. M. Grbić, A. Pavlović, “Measurements and calculations of non-ionizing radiation levels in the vicinity of 35 kV overhead power linesˮ, The 23 rd International Conference and Exhibition on Electricity Distribution – CIRED Conf. Proc, Lyon, France, 2015.
  18. M. Grbić, A. Pavlović: “Determining the zone of influence of transmission overhead power lines from the aspect of non-ionizing radiationˮ, The 6 th International Conference on Radiation and Applications in Various Fields of Research, RAD Conf. Proc, vol. 3, Ohrid, Macedonia, 2018, pp. 52–57.
    https://doi.org/10.21175/RadProc.2018.11
  19. M. Grbić, J. Mikulović, D. Salamon, “Influence of measurement uncertainty of overhead power line conductor heights on electric and magnetic field calculation resultsˮ, Int. J. Electr. Power Energy Syst., vol. 98, pp. 167–175, 2018.
    https://doi.org/10.1016/j.ijepes.2017.11.038
  20. M. Grbić, D. Salamon, J. Mikulović, “Analysis of influence of measuring voltage transformer ratio error on single-circuit overhead power line electric field calculation results, Electr. Power Syst. Res., vol. 166, pp. 232–240, 2019.
    https://doi.org/10.1016/j.epsr.2018.10.001
  21. G. Lucca, “Magnetic field produced by power lines with complex geometry” Eur. T. Electr. Power., vol. 21, no. 1, pp. 52-58, 2011.
    https://doi.org/10.1002/etep.411
  22. A. Z. El Dein, “Calculation of the electric field around the tower of the overhead transmission lines” IEEE T. Power. Deliver., vol. 29, no. 2, pp. 899-907, 2014.
    https://doi.org/10.1109/TPWRD.2013.2273500
  23. A. Z. El Dein, “Parameters affecting the charge distribution along overhead transmission lines’ conductors and their resulting electric field”, Electric Power Syst. Res., vol. 108, pp. 198-210, 2014.
    https://doi.org/10.1016/j.epsr.2013.11.011
  24. E. Turajlić, A. Mujezinović, A. Alihodžić, “A novel method based on PSO algorithm and ANN for magnetic flux density estimation near overhead transmission lines”, J. Electr. Eng., vol. 74, pp. 399-410, 2024.
    https://doi.org/10.2478/jee-2024-0048
  25. A. Alihodžić, A. Mujezinović, E. Turajlić, “Artificial neural network-based method for overhead lines magnetic flux density estimation”, J. Electr. Eng., vol. 75, pp. 181-191, 2024.
    https://doi.org/10.2478/jee-2024-0022
  26. E. Turajlić, A. Alihodžić, A. Mujezinović, “Artificial neural network models for estimation of electric field intensity and magnetic flux density in the proximity of overhead transmission line”, Radiat. Prot. Dosimetry, vol. 199, pp. 107-115, 2023.
    https://doi.org/ 10.1093/rpd/ncac229
  27. XGSLab User’s Guide, Release 9.4.1 – 03/20, SINT Ingegneria Srl, 2020.
  28. XGSLab Tutorial XGSA_FD, Release 9.4.1 – 03/20, SINT Ingegneria Srl, 2020.
  29. ЈП „Електромрежа Србије”, Дозвољене струје фазних проводника на далеководима ЈП ЕМС-а, Техничко упутство ТУ-ДВ-04, верзија 2, ЈП ЕМС, Београд, Србија, 2011. (Public Enterprise Elektromreža Srbije, Permitted currents of phase conductors of power lines owned by the Public Enterprise Elektromreža Srbije, Technical Guidance TU-DV-04, ver. 2, PE EMS, Belgrade, Serbia, 2011.)
Maja Grbić, Stefan Obradović, Aleksandar Pavlović, "Calculations of electric and magnetic fields at the location of the intersection of two overhead power lines", RAD Conf. Proc., vol. 8, 2024, pp. 83-88; http://doi.org/10.21175/RadProc.2024.16
High Intensity Laser-Plasma Particle Sources

A COMPREHENSIVE BEAMLINE FOR PROTON AND ION BEAMS ACCELERATED VIA LASER- PLASMA INTERACTION: THE APPROACH IMPLEMENTED AT THE I-LUCE FACILITY

G. Petringa, A. D. Pappalardo, R. Catalano, C. Altana, A. Amato, S. Arjmand, D. Bandieramonte, D. Bonanno, G. Cuttone, C. Manna, G. Messina, A. Miraglia, M. Musumeci, D. Oliva, S. Passarello, G. Sapienza, J. Suarez-Vargas, M. Tringale, S. Tudisco, F. Vinciguerra, F. Abubaker, F. Farokhi, S. Fattori, M. Guarrera, A. Hassan, A. Kurmanova, A. Sciuto1 and G.A.P. Cirrone

DOI: 10.21175/RadProc.2024.17

Received: 8 OCT 2024, Received revised: 16 JAN 2025, Accepted: 23 JAN 2025, Published online: 31 JULY 2025

The potential for developing compact, high-brightness particle and radiation sources has significantly advanced laser technology, particularly by enhancing laser efficiency and repetition rates. This progress is evident in the new generation of ultra-fast, high-power laser systems operating at high repetition rates, which have been installed across the world. A new high-power laser facility, "I-LUCE" (INFN Laser Induced Radiation Acceleration), is currently entirely under construction at LNS-INFN (Laboratori Nazionali del Sud – Istituto Nazionale di Fisica Nucleare) in Catania, Italy. This paper provides an overview of the I-LUCE facility, highlighting its main features and potential. It also includes a detailed description of the beamline designed for proton and ion beam transport and selection, as well as a thorough description of the diagnostic and dosimetric systems developed for dosimetric and radiobiological applications.
  1. G. Milluzzo, G. Petringa, R. Catalano, G.A.P. Cirrone, “Handling and dosimetry of laser-driven ion beams for applications”, Eur. Phys. J. Plus, vol. 136, no. 1170, 2021.
    https://doi.org/10.1140/epjp/s13360-021-02134-z
  2. A. Macchi, M. Borghesi, M. Passoni, “Ion acceleration by superintense laser-plasma interaction“, Rev. Mod. Phys., vol. 85, no.2, pp. 751- 793, 2013.
    https://doi.org/10.1103/RevModPhys.85.751
  3. T.M. Jeong, “Measurement of the electron density produced by the prepulse in an experiment of high energy proton beam generation”, J. Korean Phys. Soc., vol. 50, no. 1, pp. 34-39, 2007.
    https://doi.org/10.3938/jkps.50.34
  4. G.A.P. Cirrone et al, “ELIMED-ELIMAIA: The First Open User Irradiation Beamline for Laser- Plasma-Accelerated Ion Beams”, Front. Phys., vol. 8, p. 564907, 2020.
    https://doi.org/10.3389/fphy.2020.564907
  5. D. Margarone et al. “ELIMAIA: a laser-driven ion accelerator for multidisciplinary applications”, Quant Beam Sci., vol. 2, no. 2, 2018.
    https://doi.org/10.3390/qubs2020008
  6. C. Richter et al., “Laser-Based Particle Acceleration for Future Ion Therapy: Current Status of the Joint Project OnCOOPtics with Special Focus on Beam Delivery and Dosimetry”, Med. Phys., vol. 37, no. 6Part23, pp. 3292–3292, 2010.
    https://doi.org/10.1118/1.3468857
  7. BELLA: The Berkeley Lab Laser Accelerator. http://www.lbl.gov/community/bella/
  8. M. Maggiore et al., “Innovative handling and transport solutions for laser-driven ion beams”, AIP Conf. Proc., vol. 1546, pp. 34-43, 2013.
  9. A. Tramontana et al., “The Energy Selection System for the laser-accelerated proton beams at ELI-Beamlines”, J. Instrum., vol. 9, no. C05065, 2014.
    https://doi.org/10.1088/1748-0221/9/05/C05065
  10. V. Scuderi et al, “Development of an energy selector system for laser-driven proton beam applications”, Nucl. Instr. Meth. A, vol. 740, pp. 87-93, 2014.
    https://doi.org/10.1016/j.nima.2013.10.037
  11. G. Milluzzo et al., “A new energy spectrum reconstruction method for time-of-flight diagnostics of high-energy laser-driven protons”, Rev. Sci. Instrum., vol. 90, 083303, 2019.
    https://doi.org/10.1063/1.5082746
  12. G. Cuttone et al. “First Dosimetry Intercomparison Results for the CATANA project”, Phys Med., vol. 15, pp. 121–130, 1999.
  13. R. Catalano et al., “Transversal dose profile reconstruction for clinical proton beams: A detectors inter-comparison“, Phys Med., vol. 70, pp. 133–138, 2020.
    https://doi.org/10.1016/j.ejmp.2020.01.006
  14. G. Petringa et al., “PRAGUE (Proton Range Measurement Using Silicon Carbide): a detector to measure online the proton beam range with laser- driven proton beams”, JACoW IPAC2023 THPA078, 2023. https://doi.org/10.18429/JACoW-IPAC2023- THPA078
G. Petringa, A.D. Pappalardo, R. Catalano, C. Altana, A. Amato, S. Arjmand, D. Bandieramonte, D. Bonanno, G. Cuttone, C. Manna, G. Messina, A. Miraglia, M. Musumeci, D. Oliva, S. Passarello, G. Sapienza, J. Suarez-Vargas, M. Tringale, S. Tudisco, F. Vinciguerra, F. Abubaker, F. Farokhi, S. Fattori, M. Guarrera, A. Hassa, A. Kurmanova, A. Sciuto, G.A.P. Cirrone, "A comprehensive beamline for proton and ion beams accelerated via laser-plasma interaction: The approach implemented at the I-LUCE facility", RAD Conf. Proc., vol. 8, 2024, pp. 89-95; http://doi.org/10.21175/RadProc.2024.17
High Intensity Laser-Plasma Particle Sources

IMPLEMENTING PLASMA-DISCHARGE CAPILLARY DESIGN FOR VERY HIGH ENERGY ELECTRON (VHEE) APPLICATIONS AT I-LUCE FACILITY

S. Arjmand, A. Amato, R. Catalano, G. Cuttone, C. Manna, D. Oliva, A.D. Pappalardo, G. Petringa, J. Suarez, F. Vinciguerra, G.A.P. Cirrone

DOI: 10.21175/RadProc.2024.18

Received: 31 OCT 2024, Received revised: 29 JAN 2025, Accepted: 14 FEB 2025, Published online: 31 JULY 2025

Very high-energy electron (VHEE) radiotherapy (RT) has gained significant attention as a viable approach for cancer treatment, offering enhanced dose distribution and deeper penetration (up to 30 cm) compared to traditional photon-based therapies. VHEE RT also supports ultra-high dose-rate (UHDR) irradiation, enabling FLASH radiotherapy (FLASH-RT) to deliver therapeutic doses in milliseconds while minimizing damage to healthy tissues. However, the practical implementation of VHEE has been limited by the lack of hospital-scale accelerators. To overcome this barrier, high-gradient laser-plasma accelerators (LPAs) have emerged as a promising solution, offering cost-effective, compact, table-top accelerators suitable for clinical settings, although the required laser systems may not be as compact. We investigate VHEE applications at the upcoming I-LUCE radiation production facility at INFN-LNS, using a plasma- discharge capillary. Dose delivery estimate for a 200 MeV electron beam is reported through GEANT4 Monte Carlo (MC) simulations, exploring the development of next-generation radiotherapy techniques.
  1. R. Bingham, R. Trines, “Introduction to plasma accelerators: the basics”, Proceeding of the 2014 CAS-CERN accelerator school: plasma wake acceleration, vol. 1, pp. 67-77, 2016.
    https://doi.org/10.5170/CERN-2016-001.67
  2. A. Lagzda, “VHEE Radiotherapy Studies at CLARA and CLEAR Facilities”, PhD thesis, University of Manchester, Manchester, UK, 2019.
    https://research.manchester.ac.uk/en/studentTheses/vhee-radiotherapy-studies-at-clara-and-clear-facilities
  3. P. Muggli et al., “White paper: AWAKE, plasma wakefield acceleration of electron bunches for near and long-term particle physics application”, arXiv:2203.09198v1, 2022.
    https://doi.org/10.48550/arXiv.2203.09198
  4. J. Fischer et al., “Very high-energy electrons as radio therapy opportunity”, Eur. Phys. J. Plus, vol. 139, no. 8, 2024.
    https://doi.org/10.1140/epjp/s13360-024-05455-x
  5. C. Joshi et al., “Plasma-based accelerators: then and now”, Plasma Phys. Control. Fusion, vol. 61, no. 10, 104001, 2019.
    https://doi.org/10.1088/1361-6587/ab396a
  6. J. Faure et al., “A laser-plasma accelerator producing monoenergetic electron beams”, Nature, vol. 431, pp. 541-544, 2004.
    https://doi.org/10.1038/nature02963
  7. K. Svendsen et al., “A focused very high energy electron beam for fractionated stereotactic radiotherapy”, Sci. Rep, vol. 11, no. 5844, 2021.
    https://doi.org/10.1038/s41598-021-85451-8
  8. S. Arjmand et al., “Plasma capillary for high energy electrons”, RAD Conf. Proc., vol. 8, pp. 96-102, 2024.
  9. K.N. Kim et al., “Characteristics of a very high energy electron beam in a laser wakefield accelerator for cancer therapy”, J. Korean Phys. Soc., vol. 77, pp. 399-403, 2020.
    https://doi.org/10.3938/jkps.77.399
  10. E. Esarey, P. Sprangle, J. Krall, and A. Ting, “Overview of plasma-based accelerator concepts”, IEEE Trans. Plasma Sci., vol. 24, no. 2, pp. 252-288, 1996.
    https://doi.org/10.1109/27.509991
  11. W.P. Leemans et al., “The Berkeley lab laser accelerator (BELLA): A 10 GeV laser plasma accelerator”, AIP Conf. Proc, vol. 1299, pp. 3-11, 2010.
  12. K. Nakamura et al., “Analysis of capillary guided laser plasma accelerator experiments at LBNL”, AIP Conf. Proc., vol. 1086, pp. 147-152, 2009.
    https://doi.org/10.1063/1.3080896
  13. H. Lu et al., “Laser wakefield acceleration of electron beams beyond 1 GeV from an ablative capillary discharge waveguide”, Appl. Phys. Lett., vol. 99, 091502, 2011.
    https://doi.org/10.1063/1.3626042
  14. W.P. Leemans et al., “Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime”, Phys. Rev. Lett., vol. 113, no. 24, pp. 245002-1-5, 2014.
    https://doi.org/10.1103/PhysRevLett.113.245002
  15. G.A.P. Cirrone et al., “Ion acceleration by laser-matter interaction: status and perspective with the upcoming I-LUCE facility at INFN-LNS”, Proc. IPAC'23, pp. 4386-4388, 2023.
    https://doi.org/10.18429/JACoW-IPAC2023-THPA179
  16. C. McGuffey et al., “Ionization Induced Trapping in a Laser Wakefield Accelerator”, Phys. Rev. Lett, vol. 104, no. 2, pp. 025004-1-4, 2010.
    https://doi.org/10.1103/PhysRevLett.104.025004
  17. C.G.R. Geddes et al., “Plasma-density-gradient injection of low absolute-momentum-spread electron bunches”, Phys. Rev. Lett, vol. 100, no. 21, pp. 215004-1-4, 2008.
    https://doi.org/10.1103/PhysRevLett.100.215004
  18. K. Schmid et al., “Density-transition based electron injector for laser driven wakefield accelerators”, Phys. Rev. ST Accel. Beams, vol. 13, no. 9, pp. 091301-1-5, 2010.
    https://doi.org/10.1103/PhysRevSTAB.13.091301
  19. C. Thaury et al., “Shock assisted ionization injection in laser-plasma accelerators”, Sci. Rep., vol. 5, pp. 16310-1-7, 2015.
    https://doi.org/10.1038/srep16310
  20. J. Faure et al., “Experiments and simulations of the colliding pulse injection of electrons in plasma wakefields”, IEEE Trans. Plasma Sci, vol. 36, no. 4, pp. 1751–1759, 2008.
    https://doi.org/10.1109/TPS.2008.927430
  21. M. Mirzaie et al., “Effect of injection-gas concentration on the electron beam quality from a laser-plasma accelerator”, Phys. Plasmas, vol. 25, no. 4, 043106, 2018.
    https://doi.org/10.1063/1.5008561
  22. T. Tajima and J.M. Dawson, “Laser electron accelerator”, Phys. Rev. Lett, vol. 43, no. 4, pp. 267-270, 1979.
    https://doi.org/10.1103/PhysRevLett.43.267
  23. E. Esarey et al., “Physics of laser-driven plasma accelerators”, Rev. Mod. Phys, vol. 81, no. 3, pp. 1229-1285, 2009.
    https://doi.org/10.1038/s41598-020-74256-w
  24. W.P. Leemans, E. Esarey, “Laser-driven plasma-wave electron accelerators”, Phys. Today, vol. 62, no. 3, pp. 44-49, 2009.
    https://doi.org/10.1063/1.3099645
  25. S.M. Hooker, “Developments in laser-driven plasma accelerators”, Nature Photonics, vol. 7, no. 10, pp. 775-782, 2013.
    https://doi.org/10.1038/nphoton.2013.234
  26. M. Hansson et al., “Enhanced stability of laser wakefield acceleration using dielectric capillary tubes”, Phys. Rev. ST Accel. Beams, vol. 17, 031303, 2014.
    https://doi.org/10.1103/PhysRevSTAB.17.031303
  27. S. Arjmand et al., “Characterization of plasma sources for plasma-based accelerators”, JINST, vol. 15, C09055, 2020.
    https://doi.org/10.1088/1748-0221/15/09/C09055
  28. S. Arjmand et al., “Spectroscopic measurements as diagnostic tool for plasma-filled capillaries”, JACoW.IPAC2022, WEPOST035, 2022.
    https://doi.org/10.18429/JACoW-IPAC2022-WEPOST035
  29. S. Arjmand et al., “Spectral line shape for plasma electron density characterization in capillary tubes”, J. Phys. Conf. Ser, vol. 2439, pp. 012012-1-3, 2023.
    https://doi.org/10.1088/1742-6596/2439/1/012012
  30. S. Arjmand et al., “Shot-by-shot stability of the discharge produced plasmas in suitably shaped capillaries”, JINST, vol. 18, C04016, 2023.
    https://doi.org/10.1088/1748-0221/18/04/C04016
  31. S. Arjmand et al., “Different elements, same results: time-resolved temperature determination by oxygen and nitrogen elements”, JINST, vol. 18, P08003, 2023.
    https://doi.org/10.1088/1748-0221/18/08/P08003
  32. M.G. Ronga et al., “Back to the future: Very high-energy electrons (VHEEs) and their potential application in radiation therapy”, Cancers, vol. 13, no. 19, pp. 4942-1-19, 2021.
    https://doi.org/10.3390/cancers13194942
  33. K. Kokurewicz et al., “Laser-plasma generated very high energy electrons (VHEEs) in radiotherapy”, Proc. SPIE, 10239, 102390C, 2017.
    https://doi.org/10.1117/12.2271183
  34. S. Siddique et al., “FLASH radiotherapy and the use of radiation dosimeters”, Cancers, vol. 15, no. 15, 3883, 2023.
    https://doi.org/10.3390/cancers15153883
  35. J.C.L Chow et al., “Flash radiotherapy: innovative cancer treatment”, Encyclopedia, vol. 3, no. 3, 2023.
    https://doi.org/10.3390/encyclopedia3030058
  36. M.G. Ronga et al., “Back to the future: Very high-energy electrons (VHEEs) and their potential application in radiation therapy”, Cancers, vol. 13, no. 19, pp. 4942-1-19, 2021.
    https://doi.org/10.3390/cancers13194942
  37. K. Kokurewicz et al., “Laser-plasma generated very high energy electrons (VHEEs) in radiotherapy”, Proc. SPIE, 10239, 102390C, 2017.
    https://doi.org/10.1117/12.2271183
  38. L. Gizzi et al., “Laser–plasma acceleration of electrons for radiobiology and radiation sources”, Nucl. Instrum. Meth. B, vol. 355, pp. 241–245, 2015.
    https://doi.org/10.1016/j.nimb.2015.03.050
  39. L. Labate et al., “Toward an effective use of laser-driven very high energy electrons for radiotherapy: Feasibility assessment of multi-field and intensity modulation irradiation schemes”, Sci. Rep, vol. 10, 17307, 2020.
    https://doi.org/10.1038/s41598-020-74256-w
  40. V. Favaudon et al., “Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice”, Sci. Transl. Med, vol. 6, no. 245, 245ra93, 2014.
    https://doi.org/10.1126/scitranslmed.3008973
  41. S. Lee et al., “One-body capillary plasma source for plasma accelerator research at e-LABs”, Appl. Sci, vol. 13, no. 4, pp. 2564-1-10, 2023.
    https://doi.org/10.3390/app13042564
  42. GEANT4 Toolkit.
    https://geant4.web.cern.ch
  43. C. M. Lazzarini et al., “Ultrarelativistic electron beams accelerated by terawatt scalable kHz laser”, Phys. Plasmas, vol. 31, 030703, 2024.
    https://doi.org/10.1063/5.0189051
  44. J. Monzac et al., “Optical ionization effects in kHz laser wakefield acceleration with few-cycle pulses”, Phys. Rev. Research, vol. 6, 043099, 2024.
    https://doi.org/10.1103/PhysRevResearch.6.043099
S. Arjmand, A. Amato, R. Catalano, G. Cuttone, C. Manna, D. Oliva, A.D. Pappalardo, G. Petringa, J. Suarez, F. Vinciguerra, G.A.P. Cirrone, "Implementing plasma-discharge capillary design for very high energy electron (VHEE) applications at I-LUCE facility", RAD Conf. Proc., vol. 8, 2024, pp. 96-102; http://doi.org/10.21175/RadProc.2024.18
High Intensity Laser-Plasma Particle Sources

LASER DRIVEN USER FACILITIES AND STATUS OF I-LUCE AT LABORATORI NAZIONALI DEL SUD OF INFN (ITALY)

G.A.P. Cirrone, D. Margarone, S. Arjmand, G. Petringa, J. Suarez, R. Catalano, A.D. Pappalardo, D. Oliva, C. Altana, A. Amato, D. Bandieramonte, D. Bonanno, G. Cuttone, L. Giuffrida, C. Manna, A. Miraglia, M. Musumeci, D. Rizzo, S. Tudisco, M. Tringale, F. Vinciguerra

DOI: 10.21175/RadProc.2024.19

Received: 28 NOV 2024, Received revised: 7 FEB 2025, Accepted: 21 FEB 2025, Published online: 31 JULY 2025

Laser-driven ion acceleration has emerged as a promising technology in accelerator physics, offering a compact alternative to conventional machines. By utilizing the interaction of high-intensity laser pulses with plasma, ions can be accelerated to high energies over short distances, enabling a wide range of applications in medical therapy, materials science, and nuclear physics. This paper provides an overview of the current facilities worldwide where laser- driven ion acceleration is being studied and implemented, and where laser-driven beams are made available to users for fundamental and applied research. It specifically focuses on the ELI-Beamlines facility (Dolní Břežany, Czech Republic) and the I-LUCE initiative facility (Catania, Italy), which aims to establish a laser facility at the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS). The main characteristics of these facilities and their generated beams are briefly discussed.
  1. W.L. Linlor, “Ion energies produced by laser giant pulse”, Appl. Phys. Lett, vol. 3, no. 11, pp. 210-211, 1963.
    https://doi.org/10.1063/1.1753852
  2. D. Lichtman, J.F. Ready, “Laser beam induced electron emission”, Phys. Rev. Lett, vol. 10, pp. 342-345, 1963.
    https://doi.org/10.1103/PhysRevLett.10.342
  3. E.L. Clark et al., “Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids”, Phys. Rev. Lett, vol. 84, no. 4, pp. 670-673, 2000.
    https://doi.org/10.1103/PhysRevLett.84.670
  4. A. Maksimchuk et al., “Forward ion acceleration in thin films driven by a high-intensity laser”, Phys. Rev. Lett, vol. 84, no. 18, pp. 4108-4111, 2000.
    https://doi.org/10.1103/PhysRevLett.84.4108
  5. R.A. Snavely et al., “Intense high-energy proton beams from petawatt-laser irradiation of solids”, Phys. Rev. Lett, vol. 85, 2945, 2000.
    https://doi.org/10.1103/PhysRevLett.85.2945
  6. A. Macchi, C. Benedetti, “Ion acceleration by radiation pressure in thin and thick targets”, Nucl. Instrum. Methods Phys. Res. A, vol. 620, no. 1, pp. 41-45, 2010.
    https://doi.org/10.1016/j.nima.2010.01.057
  7. U. Linz, J. Alonso, “Laser-driven ion accelerators for tumor therapy revisited”, Phys. Rev. Accel. Beams, vol. 19, 124802, 2016.
    https://doi.org/10.1103/PhysRevAccelBeams.19.124802
  8. G.A.P. Cirrone et al., “Ion acceleration by laser-matter interaction: status and perspective with the upcoming I-LUCE facility at INFN-LNS”, Proc. IPAC'23, pp. 4386-4388, 2023.
    https://doi.org/10.18429/JACoW-IPAC2023-THPA179
  9. A. Macchi et al., “Ion acceleration by superintense laser-plasma interaction”, Rev. Mod. Phys, vol. 85, no. 2, pp. 751-793, 2013.
    https://doi.org/10.1103/RevModPhys.85.751
  10. H. Daido et al., “Review of laser-driven ion sources and their applications”, Rep. Prog. Phys, vol. 75, no. 5, 056401, 2012.
    https://doi.org/10.1088/0034-4885/75/5/056401
  11. S.C. Wilks et al., “Energetic Proton Generation in Ultra-Intense Laser-solid Interactions”, Phys. Plasmas, vol. 8, pp. 542-549, 2001.
    https://doi.org/10.1063/1.1333697
  12. A. Macchi et al., “Laser acceleration of ion bunches at the front surface of overdense plasmas”, Phys. Rev. Lett, vol. 94, 165003, 2005.
    https://doi.org/10.1103/PhysRevLett.94 estadual
  13. J. Denavit, “Absorption of high-intensity subpicosecond lasers on solid density targets”, Phys. Rev. Lett, vol. 69, 3052, 1992.
    https://doi.org/10.1103/PhysRevLett.69.3052
  14. L.O. Silva et al., “Proton shock acceleration in laser-plasma interactions”, Phys. Rev. Lett, vol. 92, 015002, 2004.
    https://doi.org/10.1103/PhysRevLett.92.015002
  15. D. Jung et al., “Monoenergetic ion beam generation by driving ion solitary waves with circularly polarized laser light”, Phys. Rev. Lett, vol. 107, 115002, 2011.
    https://doi.org/10.1103/PhysRevLett.107.115002
  16. L. Yin et al., “Mono-energetic ion beam acceleration in solitary waves during relativistic transparency using high-contrast circularly polarized short-pulse laser and nanoscale targets”, Phys. Plasmas, vol. 18, no. 5, 053103, 2011.
    https://doi.org/10.1063/1.3587110
  17. T.Z. Esirkepov et al., “Coulomb explosion of a cluster irradiated by a high intensity laser pulse”, Laser Part. Beams, vol. 18, no. 3, pp. 503-506, 2000.
    https://doi.org/10.1017/S0263034600183211
  18. V.Y. Bychenkov, V.E. Kovaliev, “Plasma Phys. Rep.”, vol. 31, pp. 178-183, 2005.
    https://doi.org/10.1134/1.1866599
  19. L Yin et al., “Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets”, Phys. Plasmas, vol. 14, no. 5, 056706, 2007.
    https://doi.org/10.1063/1.2436857
  20. J.C. Fernandez et al., “Fast ignition with laser-driven proton and ion beams”, Nucl. Fusion, vol. 54, no. 5, 054006, 2014.
    https://doi.org/10.1088/0029-5515/54/5/054006
  21. J. Badziak et al., “Generation of picosecond high-density ion fluxes by skin-layer laser-plasma interaction”, Laser Part. Beams, vol. 23, no. 2, pp. 143-147, 2005.
    https://doi.org/10.1017/S0263034605050238
  22. J. Badziak et al., “Studies on laser-driven generation of fast high-density plasma blocks for fast ignition”, Part. Beams, vol. 24, no. 2, pp. 249-254, 2006.
    https://doi.org/10.1017/S0263034606060368
  23. J. Badziak et al., “Generation of ultraintense proton beams by multi-ps circularly polarized laser pulses for fast ignition-related applications”, Phys. Plasmas, vol. 18, 053108, 2011.
    https://doi.org/10.1063/1.3590856
  24. R.A. Simpson et al., “Demonstration of TNSA proton radiography on the National Ignition Facility Advanced Radiographic Capability (NIF-ARC) laser”, Plasma Phys. Control. Fusion, vol. 63, no. 12, 124006, 2021.
    https://doi.org/10.1088/1361-6587/ac2349
  25. C. Radier et al., “10 PW peak power femtosecond laser pulses at ELI-NP”, High Power Laser Science and Engineering, vol. 10, e21, 2022.
    https://doi.org/10.1017/hpl.2022.11
  26. D. Margarone et al., “ELIMAIA: A laser-driven ion accelerator for multidisciplinary applications”, Quantum Beam Sci., vol. 2, no. 2, 8, 2018.
    https://doi.org/10.3390/qubs2020008
  27. G.A.P. Cirrone et al., “ELIMED-ELIMAIA: The first open user irradiation beamline for laser-plasma-accelerated ion beams”, Front Phys, vol. 8, 564907, 2020.
    https://doi.org/10.3389/fphy.2020.564907
  28. F. Schillaci et al., “The ELIMAIA laser-plasma ion accelerator: technology commissioning and perspectives”, Quantum Beam Sci., vol. 6, no. 4, 30, 2020.
    https://doi.org/10.3390/qubs6040030
  29. U. Schramm et al., “First results with the novel petawatt laser acceleration facility in Dresden”, J. Phys.: Conf. Ser, vol. 874, 012028, 2017.
    https://doi.org/10.1088/1742-6596/874/1/012028
  30. C. Agodi et al., “Nuclear physics midterm plan at LNS”, Eur. Phys. J. Plus, vol. 138, 1038, 2023.
    https://doi.org/10.1140/epjp/s13360-023-04358-7
  31. C. Qin et al., “High efficiency laser-driven proton sources using 3D-printed micro structure”, Commun Phys, vol. 5, 124, 2022.
    https://doi.org/10.1038/s42005-022-00900-8
  32. F. Schillaci et al., “Design of a large acceptance, high efficiency energy selection system for the ELIMAIA beamline”, JINST, vol. 11, P08022, 2016.
    https://doi.org/10.1088/1748-0221/11/08/P08022
  33. W. Leemans et al., “The BErkeley Lab Laser Accelerator (BELLA): A 10 GeV laser plasma accelerator”, AIP Conf. Proc, vol. 1299, no. 1, pp. 3-11, 2010.
    https://doi.org/10.1063/1.3520352
  34. T. Tajima, J.M. Dawson, “Laser electron accelerator”, Phys. Rev. Lett, vol. 43, 267, 1979.
    https://doi.org/10.1103/PhysRevLett.43.267
  35. S. Arjmand et al., “Characterization of plasma sources for plasma-based accelerators”, JINST, vol. 15, C09055, 2020.
    https://doi.org/10.1088/1748-0221/15/09/C09055
  36. S. Arjmand et al., “Spectral line shape for plasma electron density characterization in capillary tubes”, J. Phys.: Conf. Ser, vol. 2439, 012012, 2023.
    https://doi.org/10.1088/1742-6596/2439/1/012012
  37. Q. Liu et al., “Characteristic diagnosis of supersonic gas jet target for laser wakefield acceleration with high spatial-temporal resolution Nomarski interference system”, Front. Phys, vol. 11, 1203946, 2023.
    https://doi.org/10.3389/fphy.2023.1203946
  38. S. Arjmand et al., “Spectroscopic measurements as diagnostic tool for plasma-filled capillaries”, JACoW.IPAC2022, WEPOST035, pp. 1776-1779, 2022.
    https://doi.org/10.18429/JACoW-IPAC2022-WEPOST035
  39. A.J. Gonsalves et al., “Transverse interferometry of a hydrogen-filled capillary discharge waveguide”, Phys. Rev. Lett, vol. 98, 025002, 2007.
    https://doi.org/10.1103/PhysRevLett.98.025002
G.A.P. Cirrone, D. Margarone, S. Arjmand, G. Petringa, J. Suarez, R. Catalano, A.D. Pappalardo, D. Oliva, C. Altana, A. Amato, D. Bandieramonte, D. Bonanno, G. Cuttone, L. Giuffrida, C. Manna, A. Miraglia, M. Musumeci, D. Rizzo, S. Tudisco, M. Tringale, F. Vinciguerra, "Laser driven user facilities and status of I-LUCE at Laboratori Nazionali del Sud of INFN (Italy)", RAD Conf. Proc., vol. 8, 2024, pp. 103-109; http://doi.org/10.21175/RadProc.2024.19