Volume 8, 2024 |
![]() |
Table of contents |
List of Reviewers |
USING MACHINE LEARNING FOR EARLY ALZHEIMER'S DETECTION IN COGNITIVE NEUROSCIENCE
Orrù Graziella, Piarulli Andrea, Ciro Conversano, Angelo Gemignani
Received: 2 AUG 2024, Received revised: 3 OCT 2024, Accepted: 10 OCT 2024, Published online: 2 NOV 2024
Abstract | References | Cite This | Full Text (PDF)
- R. Brookmeyer, C. H. Kawas, N. Abdallah, A.
Paganini-Hill, R. C. Kim, M. M. Corrada, “Impact
of interventions to reduce Alzheimer's disease
pathology on the prevalence of dementia in the
oldest-old”, Alzheimer's & Dement., vol. 12, no. 3,
pp. 225-232, 2016.
https://doi.org/10.1016/j.jalz.2016.01.004 - G. Orrù, S. Sampietro, S. Catanzaro, A. Girardi,
M. Najjar, V. Giantin, G Sergi, E. Manzato, G. Enzi,
E.M. Inelmen, A Coin, “Serial position effect in a
free recall task: differences between probable
dementia of Alzheimer type (PDAT), vascular
(VaD) and mixed etiology dementia
(MED)”, Archives of Gerontology and Geriatrics,
vol. 49, pp. 207-210, 2009.
https://doi.org/10.1016/j.archger.2009.09.030 - A. Coin, M. Najjar, S. Catanzaro, G. Orru, S.
Sampietro, G. Sergi, E. Manzato, E. Perissinotto, G.
Rinaldi, S. Sarti, A. Imoscopi, E. Ruggiero, A.
Girardi, “A retrospective pilot study on the
development of cognitive, behavioral and
functional disorders in a sample of patients with
early dementia of Alzheimer type”, Archives of
Gerontology and Geriatrics, vol. 49, pp. 35-38,
2009.
https://doi.org/10.1212/wnl.34.7.939 - B. Dubois, A. Padovani, P. Scheltens, A. Rossi, G.
Dell’Agnello, “Timely diagnosis for Alzheimer’s
disease: a literature review on benefits and
challenges”, J. Alzheimers Dis., vol. 49, no. 3, pp.
617-631, 2016.
https://doi.org/10.3233/JAD-150692 - S. Vieira, W. H. Pinaya, A. Mechelli, “Using deep
learning to investigate the neuroimaging correlates
of psychiatric and neurological disorders: Methods
and applications”, Neurosci. Biobehav. Rev., vol.
74, pp. 58-75, 2017.
https://doi.org/10.1016/j.neubiorev.2017.01.002 - D. B. Dwyer, P. Falkai, N. Koutsouleris,
“Machine learning approaches for clinical
psychology and psychiatry”, Annu. Rev. Clin.
Psychol., vol. 14, pp. 91-118, 2018.
https://doi.org/10.1146/annurev-clinpsy-032816- 045037 - R. Ferrucci, F. Mameli, F. Ruggiero, M. Reitano,
M. Miccoli, A. Gemignani, C. Conversano, M. Dini,
S. Zago, S. Piacentini, B. Poletti, A. Priori, G. Orrù, “Alternate fluency in Parkinson’s disease: A
machine learning analysis”, PLOS ONE, vol. 17, no.
3, pp. e0265803-1-12, 2022.
https://doi.org/10.1371/journal.pone.0265803 - G. Pace, G. Orrù, M. Monaro, F. Gnoato, R.
Vitaliani, K. B. Boone, A. Gemignani, G. Sartori,
“Malingering detection of cognitive impairment
with the B test is boosted using machine
learning”, Front. Psychol., vol. 10, pp. 1650-1-8,
2019.
https://doi.org/10.3389/fpsyg.2019.01650 - A.B. Shatte, D.M. Hutchinson, S.J. Teague,
“Machine learning in mental health: a scoping
review of methods and applications”, Psychol.
Med., vol. 49, no. 9, pp. 1426-1448, 2019.
https://doi.org/10.1017/S0033291719000151 - A. Ferrarese, G. Sartori, G. Orrù, A. C. Frigo, F.
Pelizzaro, P. Burra, M. Senzolo, “Machine learning
in liver transplantation: a tool for some unsolved
questions?”, Transplant Int., vol. 34, no. 3, pp.
398-411, 2021.
https://doi.org/10.1111/tri.13818 - L. Nanni , M. Interlenghi, S. Brahnam, C.
Salvatore, S. Papa, R. Nemni, I. Castiglioni and
Alzheimer's Disease Neuroimaging Initiative,
"Comparison of transfer learning and conventional
machine learning applied to structural brain MRI
for the early diagnosis and prognosis of
Alzheimer's disease," Front. Neurol., vol. 11, p.
576194, 2020.
https://doi.org/10.3389/fneur.2020.576194 - I. Bazarbekov, A. Razaque, M. Ipalakova, J. Yoo,
Z. Assipova, A. Almisreb, “A review of artificial
intelligence methods for Alzheimer's disease
diagnosis: Insights from neuroimaging to sensor
data analysis”, Biomed. Signal Process. Control,
vol. 92, pp. 106023, 2024.
https://doi.org/10.1016/j.bspc.2024.106023 - G. Orrù, M. Monaro, C. Conversano, A.
Gemignani, G. Sartori, “Machine learning in
psychometrics and psychological research”, Front.
Psychol., vol. 10, pp. 2970-1-10, 2020.
https://doi.org/10.3389/fpsyg.2019.02970 - E. Moradi, A. Pepe, C. Gaser, H. Huttunen, J.
Tohka, and Alzheimer's Disease Neuroimaging
Initiative, “Machine learning framework for early
MRI-based Alzheimer's conversion prediction in
MCI subjects”, NeuroImage, vol. 104, pp. 398-412,
2015.
https://doi.org/10.1016/j.neuroimage.2014.10.002 - L. Khedher, J. Ramírez, J. M. Górriz, A. Brahim,
F. Segovia, and Alzheimer’s Disease Neuroimaging
Initiative, “Early diagnosis of Alzheimer’s disease
based on partial least squares, principal component
analysis and support vector machine using
segmented MRI images”, Neurocomputing, vol.
151, pp. 139-150, 2015.
https://doi.org/10.1016/j.neucom.2014.09.072 - K.M.M. Uddin, M.J. Alam, M.A. Uddin, S. Aryal,
“A novel approach utilizing machine learning for
the early diagnosis of Alzheimer's
disease”, Biomed. Mater. Devices, vol. 1, no. 2, pp.
882-898, 2023.
https://doi.org/10.1007/s44174-023-00078-9 - C. Kavitha, V. Mani, S. R. Srividhya, O. I. Khalaf,
C. A. Tavera Romero, “Early-stage Alzheimer's
disease prediction using machine learning
models”, Front. Public Health, vol. 10, p. 853294,
2022.
https://doi.org/10.3389/fpubh.2022.853294 - C. Salvatore, A. Cerasa, P. Battista, M. C. Gilardi,
A. Quattrone, I. Castiglioni, and Alzheimer's
Disease Neuroimaging Initiative, “Magnetic resonance imaging biomarkers for the early
diagnosis of Alzheimer's disease: a machine
learning approach”, Front. Neurosci., vol. 9, p. 307,
2015.
https://doi.org/10.3389/fnins.2015.00307 - J. Venugopalan, L. Tong, H. R. Hassanzadeh,
M.D. Wang, “Multimodal deep learning models for
early detection of Alzheimer’s disease stage”, Sci.
Rep., vol. 11, no. 1, p. 3254, 2021.
https://doi.org/10.1038/s41598-020-74399-w - P. Chlap, et al., "A review of medical image data
augmentation techniques for deep learning
applications", J. Med. Imaging Radiat. Oncol, vol.
65, no. 5, pp. 545-563, 2021.
https://doi:10.1111/1754-9485.13261 - R. Zebari, A. Abdulazeez, D. Zeebaree, D.
Zebari, J. Saeed, “A comprehensive review of
dimensionality reduction techniques for feature
selection and feature extraction”, JASTT, vol. 1, no.
1, pp. 56-70, 2020.
https://doi.org/10.38094/jastt1224
GROSS BETA-RADIOACTIVITY OF LEAVES OF THUJA PYRAMIDALIS IN CONDITIONS OF HYDROPONICS AND SOIL IN ARARAT VALLEY AND DILIJAN FOREST EXPERIMENTAL STATION
L.M. Ghalachyan, Kh.S. Mayrapetyan, A.H. Tadevosyan, A.A. Ghahramanyan, S.A. Eloyan, A.S. Yeghiazaryan, A.A. Hakobjanyan
Received: 13 SEPR 2024, Received revised: 3 NOV 2024, Accepted: 12 NOV 2024, Published online: 14 NOV 2024
Abstract | References | Cite This | Full Text (PDF)
- A. Mikhaylov, N. Moiseev, K. Aleshin, T. Burkhardt,
“Global climate change and greenhouse effect”,
Entrepreneurship and Sustainability Issues, vol. 7,
no. 4, 2897, 2020.
http://doi.org/10.9770/jesi.2020.7.4(21) - Annual 2023 Global Climate Report. National
Centers for Environmental Information Retrieved from:
https://www.ncei.noaa.gov/access/monitoring/monthly-
report/global/202313
Retrieved on: Jan. 20, 2024 - 3. V. Knapp, D. Pevec, Promises and limitations of
nuclear fission energy in combating climate change,
Energy Policy, vol. 120, pp. 94-99, 2018.
https://doi.org/10.1016/j.enpol.2018.05.027 - B.F. Myasoedov, S.N. Kalmykov, “Nuclear power
industry and the environment”, Mendeleev
Communications, vol. 25, no. 5, pp. 319-328, 2015.
https://doi.org/10.1016/j.mencom.2015.09.001 - D. Todorovic, D. Popović, J. Ajtic, J. Nikolic, “Trace
Elements and Radionuclides ( 137 Cs, 40 K, 210 Pb and 7 Be)
in Urban Air Monitored by Moss and Tree Leaves”,
Environmental Science and Pollution Research, vol.
20, pp. 525–532, 2013.
http://doi.org/10.1007/s11356-012-0940-y - 6. Г.Т. Бозшатаева, А.И. Касымбекова, Г.С.
Оспанова, Г.К. Турабаева, М.Б. Кыдыралиева,
“Использование биоиндикаторов для оценки
состояния атмосферного воздуха”, Меж. ж.
прикладных и фундаментальных исследований,
т. 12, no. 2, стр. 302-306, 2017 (G.T. Bozshataeva,
A.I. Kasymbekova, G.S. Ospanova, G.K. Turabaeva,
M.B. Kydyralieva, “Use of bioindicators to assess the
state of atmospheric air”, International Journal of
Applied and Fundamental Research, vol. 12, no. 2,
pp. 302-306, 2017.).
Retrieved from: https://applied- research.ru/ru/article/view?id=12039
Retrieved on: March 03, 2024 - О.Л. Воскресенская, А.В. Леухин, В.С.
Воскресенский, А.Р. Сазонов, “Накопление и
распределение радионуклидов в органах туи
западной, произрастающей в условиях городской
среды”, Вестник Марийского государственного
университета, т. 8, cтр. 39-42, 2012 (O.L.
Voskresenskaya, A.V. Leukhin, V.S. Voskresensky,
A.R. Sazonov, “Accumulation and distribution of
radionuclides in the organs of western thuja growing
in urban environments”, Bulletin of the Mari State
University, vol. 8, pp. 39-42, 2012.).
Retrieved from: https://cyberleninka.ru/article/n/nakoplenie-i- raspredelenie-radionuklidov-v-organah-tui- zapadnoy-proizrastayuschey-v-usloviyah-gorodskoy- sredy/viewer
Retrieved on: May 10, 2024 - А.Н. Переволоцкий, Е.А. Гончаров, Т.В.
Переволоцкая, “К вопросу о моделировании
распределения радионуклидов в лесных
биогеоценозах”, Радиационная биология.
Радиоэкология, том 6, cтр. 655-663, 2016 (A.N.
Perevolotsky, E.A. Goncharov, T.V. Perevolotskaya,
“On the issue of modeling the distribution of
radionuclides in forest biogeocenoses”, Radiation
biology. Radioecology, vol. 6, pp. 655-663, 2016.).
Retrieved from: https://ecoradmod.narod.ru/rus/publication/perevolockij 16rbrehles_modeli.pdf
Retrieved on: Feb 10, 2024 - P. Wang, S. Yu, H. Zou, X. Lou, H. Ren, L. Zhou, et
al., “Levels, sources, variations, and human health
risk assessment of 90 Sr and 137 Cs in water and food
around Sanmen Nuclear Power Plant (China) from
2011 to 2020”, Front. Public Health, vol. 11, pp.
1136623-1-13, 2023.
http://doi.org/10.3389/fpubh.2023.1136623 - C. Park, D. Lee, H.K. Heo, S. Ahn, “Increasing of
Urban Radiation due to Climate Change and Reduction Strategy using Vegetation”, In AGU Fall
Meeting Abstracts, vol. 2017, pp. PA21A-0336, 2017.
Retrieved from: https://ui.adsabs.harvard.edu/abs/2017AGUFMPA21A03 36P/abstract
Retrieved on: June 15, 2023 - I.A. Vlad, M. Vlad, I. Vlad, “Researches
concerning the influence of cultivation and
technology systems upon growth and development of
Thuja occidentalis L. Pyramidalis and Thuja
occidentalis L. Globosa cultivars”, Analele
Universităţii din Oradea, Fascicula Protecţia
Mediului, vol. 24, 119-130, 2015
Retrieved from: http://protmed.uoradea.ro/facultate/publicatii/protectia_ mediului/2015A/hort/05.%20Vlad%20Ioana.pdf
Retrieved on: July 30, 2023 - Ս.Ա. Կտրակյան, Երևանի կանաչ տնկարկների
դենդրոֆլորայի հարստացման և գեղազարդության բարձրացման
խնդիրները: Հայաստանի կենսաբանական հանդես, հատոր 72,
համար 1-2, էջ 42-47, 2020 (S.A. Ktrakyan, “Tasks for
enriching dendroflora and enhancing the
decorativity of green stands in Yerevan”, Biological
Journal of Armenia, vol. 72, no. 1-2, pp. 42-47,
2020.)
Retrieved from: https://arar.sci.am/dlibra/publication/284232/edition/26 0887/content
Retrieved on: Oct 25, 2023 - G. Tepanosyan, V. Muradyan, A. Hovsepyan, G. Pinigin, A. Medvedev, S. Asmaryan, “Studying spatial-temporal changes and relationship of land cover and surface Urban Heat Island derived through remote sensing in Yerevan”, Armenia. Building and Environment, vol. 187, pp. 107390. 2021. http://doi.org/10.1016/j.buildenv.2020.107390
- K. Mayrapetyan, A. Hakobjanyan, L.
Ghalachyan, A. Karapetyan, A. Ghahramanyan, S.
Eloyan, A. Yeghiazaryan, A. Tadevosyan,
“Hydroponical growth and radionuclide
accumulation specificities of Thuja occidentalis in
Ararat Valley and Dilijan forest zone conditions”,
RAD Conference Proceedings, vol. 6, pp. 38–42,
2022.
http://doi.org/10.21175/RadProc.2022.07 - Լ. Վալեսյան, “Հայաստանի ազգային ատլաս”. Երևան,
«Գեոդեզիայի և քարտեզագրության կենտրոն» ՊՈԱԿ, հատոր
Ա, 2007, 230 էջ (L. Valesyan, National Atlas of
Armenia. Editor, Yerevan, vol. A, 2007, 232 pages).
Retrieved from:
https://online.fliphtml5.com/qgxio/flkz/#p=1
Retrieved on: Jan 12, 2022 - Г.Б. Бабаян, “Почвы и природные условия
Дилижанкой лесной агрохимической станции
(ДИЛАС),” Сообщения института
Агрохимических проблем и гидропоники, том 21,
стр. 21–25, 1980 (G.B. Babayan, “Soils and natural
conditions of the Dilijan Forest Agrochemical Station
(DILAS),” Communications of the Institute of
Agrochemical Problems and Hydroponics, vol. 21,
pp. 21–25, 1980).
Retrieved from: https://arar.sci.am/dlibra/publication/282592/edition/25 9388/content
Retrieved on: Feb. 20, 2022 - A. Vardanyan, L. Ghalachyan, A. Tadevosyan, V.
Baghdasaryan, A. Stepanyan, M. Daryadar, “The
phytochemical study of Eleutherococcus senticosus
(Rupr. & Maxim) leaves in hydroponics and soil
culture”, Functional Foods in Health and Disease,
vol. 13, no. 11, pp. 574-583, 2023.
https://www.doi.org/10.31989/ffhd.v13i11.1183 - Государственный стандарт ССС (ГОСТ 194113- 89). Государственный комитет СССП по стандартам, Москва (State Standard ССС (ГОСТ 194113-89). Gosudarstvenny committee SSSP on standards, Moscow.). Retrieved on: Feb. 25, 2024.
- Ф.И. Павлоцкая, “Методы определения 90Sr и других изотопов”, Физико-химические методы исследования почв, Москва, Россия: Изд-во “Наука”, 1966, 126 стр. (F. I. Pavlotskaya, “Methods of determining 90 Sr and other isotopes”, in Physiological-chemical methods of soil study, Moscow, Russia, 1966, 126 p.).
- L.M. Ghalachyan, A.H. Tadevosyan,
“Acumulation of Artificial Radionuclides in
Ecosystem of Irrigation Water-Soil-Herb in
Anthropogenic Zones of Armenian NPP”, Bulletin,
State Agrarian University of Armenia, vol. 4, pp. 5-
8, 2016.
Retrieved from:
https://library.anau.am/images/stories/grqer/Izwestiya/4 _2016/
Retrieved on: Jan. 11, 2024 - O.A. Belyaeva, K.I. Pyuskyulyan, N.E.
Movsisyan, L.V. Sahakyan, A.K. Saghatelyan,
“Radioecological studies in Armenia: a review”,
National Academy of Sciences of RA., Electronic
Journal of natural sciences, Ecology, vol. 34, no.1,
pp. 34-40, 2020.
Retrieved from: https://www.globalgeochemicalbaselines.eu
Retrieved on: June. 16, 2023 - Сельскохозяйственная радиоэкология, Под. ред. Р.М. Алексахина, Н.А. Корнеева. М., Экология, 400 стр., 1992 (Agricultural radioecology, Ed. by R.M. Aleksakhin, N.A. Korneev. Moscow, Ecology, 400 pp., 1992.).
- А.И. Щеглов, О.Б. Цветнова, “Биологический
круговорот 137Cs и 40К в дубравах и
агрофитоценозах на темно-серых лесных почвах
Тульской области России”, Радиационная
биология. Радиоэкология, том 57, no. 2, стр. 201-
209, 2017 (A.I. Shcheglov, O.B. Tsvetnova,
“Biological cycle of 137Cs and 40K in oak groves and
agrophytocenoses on dark gray forest soils of the
Tula region of Russia”, Radiation biology.
Radioecology, vol. 57, no. 2, pp. 201-209, 2017).
https://doi.org/10.7868/S0869803117020138 - Y. Gu, “Analysis and Evaluation on Radioactivity
of Common Building Materials”, Chemical
Engineering Transactions, vol. 62, pp. 127-132,
2017.
https://doi.org/10.3303/CET1762022 - M. Trautmannsheimer, P. Schramel, R. Winkler,
K. Bunzl, “Chemical fractionation of some natural
radionuclides in a soil contaminated by slags”,
Environmental Science & Technology, vol. 32, no. 2,
pp. 238-243, 1998.
http://doi.org/10.1021/es970446o - A. Hakobjanyan, A. Karapetyan, A.
Ghahramanyan, A. Yeghiazaryan, A. Gasparyan, K.
Mayrapetyan, Photosynthetic abilities and essential
oil content of hydroponic and soil Thuja occidentalis,
Bioactive Compounds in Health and Disease, vol.
7(10), pp. 550-557, 2024.
https://doi.org/10.31989/bchd.v7i10.1457 - S. Jan, Z. Rashid, T.A. Ahngar, S. Iqbal, M.A.
Naikoo, S. Majeed, T.A. Bhat, R. Gul, I. Nazir,
“Hydroponics–A review”, International Journal of
Current Microbiology and Applied Sciences, vol. 9,
no. 8, 1779-1787, 2020.
https://doi.org/10.20546/ijcmas.2020.908.206
THEORETICAL ANALYSIS OF DELAMINATION IN A VISCOELASTIC MULTILAYERED BAR BUILT- UP AT BOTH ENDS
Victor Rizov
Received: 6 AUG 2024, Received revised: 29 SEP 2024, Accepted: 7 OCT 2024, Published online: 24 NOV 2024
Abstract | References | Cite This | Full Text (PDF)
- Y. Tokovyy , C. -C. Ma, “Three-Dimensional Temperature
and Thermal Stress Analysis of an Inhomogeneous Layer”, J. Therm. Stresses, vol. 1, no. 3, pp. 790–808,
2013.
https://doi.org/10.1080/01495739.2013.787853 - Y. Tokovyy, C.-C. Ma, “Axisymmetric Stresses in an Elastic
Radially Inhomogeneous Cylinder Under Length-Varying
Loadings”, ASME J. Appl. Mech., vol. 83, no. 11, pp.
111007, 2016.
https://doi.org/10.1115/1.4034459 - L. Tokova, A. Yasinskyy, C.-C. Ma, “Effect of the layer
inhomogeneity on the distribution of stresses and
displacements in an elastic multilayer cylinder”, Acta
Mech., vol. 228, no. 8, pp. 2865-2877, 2017.
http://doi.org/10.1007/s00707-015-1519-8 - I. Dahan, U. Admon, J. Sarei, B. Yahav, M. Amar, N.
Frage, M.P. Dariel, “Functionally graded Ti-TiC
multilayers: the effect of a graded profile on adhesion to
substrate”, Mater. Sci. Forum, vol. 308-311, no. 2, pp.
923-929, 1999.
https://doi.org/10.4028/www.scientific.net/msf.308- 311.923 - N. Dolgov, “Determination of Stresses in a Two-Layer
Coating”, Strength Mater., vol. 37, no. 2, pp. 422-431,
2005.
https://doi.org/10.1007/s11223-005-0053-7 - J.-H. Yu, S. Guo, D.A. Gillard, “Bimaterial curvature
measurements for CTE of adhesives: optimization and
modelling”, J. Adhes. Sci. Technol., vol. 17, no. 2, pp. 149-
164, 2003.
https://doi.org/10.1163/156856103762301970 - J.S. Kim, K.W. Paik, S.H. Oh, “The Multilayer-Modified
Stoney’s Formula for Laminated Polymer Composites on a
Silicon Substrate”, J. Appl. Phys., vol. 86, pp. 5474–5479,
1999.
https://doi.org/10.1063/1.371548 - S-N. Nguyen, J. Lee, M. Cho, “Efficient higher-order zig-
zag theory for viscoelastic laminated composite platesˮ, Int. J. Solids Struct., vol. 62, no. 2, pp. 174-185, 2015.
http://doi.org/10.1016/j.ijsolstr.2015.02.027 - S.-N. Nguyen, J. Lee, J-W. Han, M. Cho, “A coupled
hygrothermo-mechanical viscoelastic analysis of
multilayered composite plates for long-term creep
behaviorsˮ, Compos. Struct., vol. 242, 112030, 2020.
https://doi.org/10.1016/j.compstruct.2020.112030 - L.B. Freund, “The stress distribution and curvature of a
general compositionally graded semiconductor layer”, J.
Cryst. Growth, vol. 132, no. 1-2, pp. 341-344, 1995.
https://doi.org/10.1016/0022-0248(93)90280-A - J.J. Moore, “Self-propagating high-temperature synthesis
of functionally graded PVD targets with a ceramic
working layer of TiB-TiN or TiSi-Tin”, J. Mater. Synth.
Process., vol. 10, pp. 319-330, 2002.
https://doi.org/10.1023/A:1023881718671 - I. Markov, D. Dinev, “Theoretical and experimental investigation of a beam strengthened by bonded composite strip”, Reports of International Scientific Conference VSU’2005, pp. 123-131, 2005.
- A. Attia, A.T. Berrabah, F. Bourada, et al., “Free Vibration
Analysis of Thick Laminated Composite Shells Using
Analytical and Finite Element Method”, J. Vib. Eng.
Technol., 2024.
https://doi.org/10.1007/s42417-024-01322-2 - F.Y. Addou, F. Bourada, A. Tounsi et al., “Effect of
porosity distribution on flexural and free vibrational
behaviors of laminated composite shell using a novel
sinusoidal HSDT”, Archiv. Civ. Mech. Eng, vol. 24, no.
102, 2024.
https://doi.org/10.1007/s43452-024-00894-w - F. Bounouara, M. Sadoun, M.M. Selim Saleh, A. Chikh,
A.A. Bousahla, A. Kaci, F. Bourada, A. Tounsi, A. Tounsi,
“Effect of visco-Pasternak foundation on thermo-
mechanical bending response of anisotropic thick laminated composite plates”, Steel and Composite
Structures, vol. 47, pp. 693-707, 2023.
https://doi.org/10.12989/scs.2023.47.6.693 - S.R. Choi, J.W. Hutchinson, A.G. Evans, “Delamination of
multilayer thermal barrier coatings”, Mech. Mater., vol.
31, no. 2, pp. 431–447, 1999.
https://doi.org/10.1016/S0167-6636(99)00016-2 - N.E. Dowling, “Mechanical behaviour of materialsˮ, Pearson, 2011.
- J.W. Hutchinson, Z. Suo, “Mixed mode cracking in
layered materials”, Adv. Appl. Mech., vol. 64, pp. 804-
810, 1992.
https://doi.org/10.1016/S0065-2156(08)70164-9 - multilayered functionally graded non-linear elastic
circular shafts under combined loads”, Frattura ed Integrità Strutturale, vol. 46, no. 12, pp. 158–177, 2018.
https://doi.org/10.3221/IGF-ESIS.46.16 - V. Rizov, H. Altenbach, “Multi-Layered Non-Linear
Viscoelastic Beams Subjected to Torsion at a Constant
Speed: A Delamination Analysis”, Eng. Trans., vol. 70, no.
1, pp. 53-66, 2022.
https://doi.org/10.24423/EngTrans.1720.20220303 - V. Rizov, “Inhomogeneous beam structures of rectangular
cross-section loaded in torsion: a delamination study with
considering creep”, Procedia Struct. Integrity, vol. 41, pp.
94–102, 2022.
https://doi.org/10.1016/j.prostr.2022.05.012 - V.I. Rizov, “Analysis of two lengthwise cracks in a
viscoelastic inhomogeneous beamstructure”, Engineering
Transactions, vol. 68, pp. 397-415, 2020.
https://doi.org/10.24423/EngTrans.1214.20201125 - K.S. Chobanian, Stresses in combined elastic solids, Science, 1997.
FUNCTIONALLY GRADED FRAMES UNDER SUPPORT DISPLACEMENTS: A LONGITUDINAL FRACTURE ANALYSIS WITH REFRENCE TO NON-LINEAR RELAXATION
Victor Rizov
Received: 6 AUG 2024, Received revised: 29 SEP 2024, Accepted: 3 OCT 2024, Published online: 24 NOV 2024
Abstract | References | Cite This | Full Text (PDF)
- E.K. Njim, M. Al-Waily, S.H. Bakhy, “A Critical Review
of Recent Research of Free Vibration and Stability of
Functionally Graded Materials of Sandwich Plate”, IOP
Conf. Ser.: Mater. Sci. Eng. (INTCSET 2020), vol.
1094, pp. 012081-1-30, 2021.
https://doi.org/10.1088/1757-899X/1094/1/012081 - I.M. El-Galy, B.I. Saleh, M.H. Ahmed, “Functionally
graded materials classifications and development
trends from industrial point of view”, SN Appl. Sci., vol.
1, pp. 1378-1-22, 2019.
https://doi.org/10.1007/s42452-019-1413-4 - F.F. Calim, Y.C. Cuma, “Forced vibration analysis of
viscoelastic helical rods with varying cross-section and
functionally graded material”, Mech. Based Des. Struct.
Mach., vol. 51, no. 7, pp. 3620-3631, 2023.
https://doi.org/ 10.1080/15397734.2021.1931307 - T. Hirai, L. Chen, “Recent and prospective development
of functionally graded materials in Japan”, Mater Sci.
Forum, vol. 308-311, pp. 509-514, 1999.
https://doi.org/10.4028/www.scientific.net/MSF.308- 311.509 - R.M. Mahamood, E.T. Akinlabi, Introduction to
Functionally Graded Materials. In: Functionally
Graded Materials. Topics in Mining, Metallurgy and
Materials Engineering. Springer, Cham, 2017.
https://doi.org/10.1007/978-3-319-53756-6_1 - Y. Miyamoto, W.A. Kaysser, B.H. Rabin, A. Kawasaki, R.G. Ford, Functionally Graded Materials: Design, Processing and Applications, Kluwer Academic Publishers, Dordrecht/London/Boston, 1999.
- M. Chitour, A. Bouhadra, F. Bourada, B. Mamen, A.A. Bousahla, A. Tounsi, A. Tounsi, M.A. Salem, K.M. Khedher, “Stability analysis of imperfect FG sandwich plates containing metallic foam cores under various boundary conditions”, Structures, vol. 61, p. 10621, 2024. https://doi.org/10.1016/j.istruc.2024.106021
- D.E. Lafi, A. Bouhadra, B. Mamen, A. Menasria, M.
Bourada, A.A. Bousahla, F. Bourada, A. Tounsi, A.
Tounsi, M. Yaylaci, “Combined influence of variable
distribution models and boundary conditions on the
thermodynamic behavior of FG sandwich plates lying
on various elastic foundations”, Structural Engineering
and Mechanics, vol. 89, no. 2, pp. 103-119, 2024.
https://doi.org/10.12989/sem.2024.89.2.103 - A. Tounsi , A.A. Bousahla , S.I. Tahir , A.H. Mostefa , F.
Bourada , M.A. Al-Osta , A. Tounsi , “Influences of
Different Boundary Conditions and Hygro-Thermal
Environment on the Free Vibration Responses of FGM
Sandwich Plates Resting on Viscoelastic Foundation”, International Journal of Structural Stability and
Dynamics, vol. 24, no. 11, p. 2450117,2024.
https://doi.org/10.1142/S0219455424501177 - S. Shrikantha Rao, K.V. Gangadharan,
“Functionally graded composite materials: an
overview”, Procedia Mater. Sci., vol. 5, no. 1, pp. 1291-
1299, 2014.
https://doi.org/10.1016/j.mspro.2014.07.442 - H.S. Hedia, S.M. Aldousari, A.K. Abdellatif, N.A.
Fouda, “New design of cemented stem using
functionally graded materials (FGM)”, Biomed. Mater.
Eng., vol. 24, no. 3, pp. 1575-1588, 2014.
http://doi: 10.3233/BME-140962 - S. Nikbakht , S. Kamarian , M.A. Shakeri, “A review
on optimization of composite structures Part II:
Functionally graded materials”, Compos. Struct., vol.
214, pp. 83-102, 2019.
http://doi.org/10.1016/j.compstruct.2019.01.105 - R. Madan, K. Saha, S. Bhowmick, “ Limit speeds and
stresses in power law functionally graded rotating
disks”, Advances in Materials Research, vol. 9, no. 2,
pp. 115-131, 2020.
http://doi.org/10.12989/amr.2020.9.2.115 - E.K. Njim, S.H. Bakhy, M. Al-Waily, “Free vibration
analysis of imperfect functionally graded sandwich
plates: analytical and experimental investigation”, Arch.
Mater. Sci. Eng., vol. 111, no 2, pp. 49-65, 2021.
https://doi.org/10.5604/01.3001.0015.5805 - L. Tokova, A. Yasinskyy, C.-C. Ma, “Effect of the
layer inhomogeneity on the distribution of stresses and
displacements in an elastic multilayer cylinder”, Acta
Mechanica, vol. 228, no. 8, pp. 2865-2877, 2017.
https://doi.org/10.1007/s00707-015-1519-8 - N.E. Dowling, "Mechanical behaviour of materials", Pearson, 2011.
- V. Rizov, “Delamination analysis of inhomogeneous
viscoelastic beam of rectangular section subjected to
torsion”, Coupled Systems Mechanics, vol. 12, no. 1, pp.
69-81, 2023.
https://doi.org/10.12989/csm.2023.12.1.069 - V. Rizov, H. Altenbach, “Fracture analysis of
inhomogeneous arch with two longitudinal cracks
under non-linear creep”, Adv. Mater. Res., vol. 12, no 1,
pp. 15-29, 2023.
https://doi.org/10.12989/amr.2023.12.1.015 - V. Rizov, “Effects of Periodic Loading on
Longitudinal Fracture in Viscoelastic Functionally
Graded Beam Structures”, J. Appl. Comput. Mech., vol.
8, no. 1, pp. 370–378,2022.
https://doi.org/10.22055/JACM.2021.37953.3141 - Hr. Varbanov, A. Tepavicharov, T. Ganev, “Applied theory of elasticity and plasticity”, Sofia, 1992.
TWIST VELOCITY INFLUENCE ON LENGTHWISE FRACTURE OF INHOMOGENEOUS BARS UNDER TORSIONAL LOADING
Victor Rizov
Received: 6 AUG 2024, Received revised: 29 SEP 2024, Accepted: 1 OCT 2024, Published online: 24 NOV 2024
Abstract | References | Cite This | Full Text (PDF)
- F. Chen, M. Jia, Y. She, Y. Wu, Q. Shen, L.
Zhang, “Mechanical behavior of AlN/Mo functionally
graded materials with various compositional
structures”, J Alloys Compd., vol. 816, 152512, 2020.
https://doi.org/10.1016/j.jallcom.2019.152512 - M.M. Nemat-Allal, M.H. Ata, M.R. Bayoumi, W. Khair-
Eldeen, “Powder metallurgical fabrication and
microstructural investigations of Aluminum/Steel
functionally graded material”, Materials Sciences and
Applications, vol. 2, no. 12, pp. 1708-1718, 2011.
https://doi.org/10.4236/msa.2011.212228 - M. Rezaiee-Pajand, M. Mokhtari, A.R. Masoodi,
“Stability and free vibration analysis of tapered
sandwich columns with functionally graded core and
flexible connections”, CEAS Aeronaut J, vol. 9, pp.
629–648, 2018.
https://doi.org/10.1007/s13272-018-0311-6 - M. Rezaiee-Pajand, A.R. Masoodi, “Stability Analysis of
Frame Having FG Tapered Beam–Column”, Int J Steel
Struct, vol. 19, p. 446–468, 2019.
https://doi.org/10.1007/s13296-018-0133-8 - N. Radhika, J. Sasikumar, J.L. Sylesh, R. Kishore, “Dry
reciprocating wear and frictional behaviour of B4C
reinforced functionally graded and homogenous
aluminium matrix composites”, J. Mater. Res. Technol.,
vol. 9, no. 2, pp. 1578-1592, 2020.
https://doi.org/10.1016/j.jmrt.2019.11.084 - A.J. Markworth, K.S. Ramesh, Jr. W.P. Parks, “Review:
modeling studies applied to functionally graded
materials”, J. Mater. Sci., vol. 30, 2183-2193, 1995.
https://doi.org/10.1007/BF01184560 - https://doi.org/10.1007/BF01184560
7. J. Toudehdehghan, W. Lim, K.E. Foo1, M.I.N. Ma’arof,
J. Mathews, “A brief review of functionally graded
materials”, MATEC Web of Conferences, vol. 131, pp.
03010-1-6, 2017.
https://doi.org/10.1051/matecconf/201713103010 - R.A. Ahmed, R.M. Fenjan, L.B. Hamad, N.M. Faleh, “ A
review of effects of partial dynamic loading on dynamic
response of nonlocal functionally graded material
beams”, Adv. Mater. Res., vol. 9, no. 1, pp. 33-48,
2020.
https://doi.org/10.12989/amr.2020.9.1.033 - Y. Tokovyy, C.-C. Ma, “Axisymmetric Stresses in an
Elastic Radially Inhomogeneous Cylinder Under
Length-Varying Loadings”, ASME J. Appl. Mech., vol.
83, no. 11, pp. 111007-1-7, 2016.
https://doi.org/10.1115/1.4034459 - N.E. Dowling, Mechanical behaviour of materials, Pearson, 2011.
- Z. Belabed, A. Tounsi, A.A. Bousahla, A. Tounsi, M.
Yaylacı, “Accurate free and forced vibration behavior
prediction of functionally graded sandwich beams with
variable cross-section: A finite element assessment”,
Mech. Based Des. Struct. Mach., vol, 52, no. 11, pp.
9144-9177, 2024.
https://doi.org/10.1080/15397734.2024.2337914 - Z. Belabed, A. Tounsi, A.A. Bousahla, A. Tounsi, M.
Bourada and M. A. Al-Osta, “Free vibration analysis of
Bi-Directional Functionally Graded Beams using a simple and efficient finite element model”, Struct. Eng.
Mech., vol. 90, no. 3, pp. 233-252, 2024.
https://doi.org/10.12989/sem.2024.90.3.233 - Z. Lakhdar, S. M. Chorfi, S. A. Belalia, S.A. et al.,
“Free vibration and bending analysis of porous bi-
directional FGM sandwich shell using a TSDT p-version
finite element method”, Acta Mech, vol. 235, pp.
3657–3686, 2024.
https://doi.org/10.1007/s00707-024-03909-y - V. Rizov, “Non-linear fracture in bi-directional
graded shafts in torsion,” Multidiscip. Model. Mater.
Struct., vol. 15, no. 1, pp. 156-169, 2019.
https://doi.org/10.1108/MMMS-12-2017-0163 - V. Rizov, “Viscoelastic inhomogeneous beam under
time-dependent strains: A longitudinal crack analysis”,
Advances in Computational Design, vol. 6, no. 2, pp.
153-168, 2021.
https://doi.org/10.12989/acd.2021.6.2.153 - V. Rizov, “Analysis of Two Lengthwise Cracks in a
Viscoelastic Inhomogeneous Beam Structure”, Eng
Trans, vol. 68, no. 4, pp. 397-415, 2020.
https://doi.org/10.24423/EngTrans.1214.20201125 - P. A. Lukash, Fundamentals of Non-linear Structural Mechanics, Stroiizdat, 1978.
DIELECTRIC SEALERS AS A SOURCE OF RF OVEREXPOSURE IN WORKING ENVIRONMENT
M. Israel, M. Ivanova, V. Zaryabova, Ts. Shalamanova
Received: 31 OCT 2024, Received revised: 16 JAN 2025, Accepted: 25 JAN 2025, Published online: 30 JAN 2025
Abstract | References | Cite This | Full Text (PDF)
- Directive 2013/35/EC of Junе 26 2013 of the European Parliament and of the Council on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields). Retrieved from: https://eur- lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L: 2013:179:0001:0021:EN:PDF Retrieved on: October 28, 2024
- Safety in the use of radiofrequency dielectric heaters and sealers, A practical guide, Occupational safety and Health Series No. 71, 1998, Prepared by the ICNIRP in collaboration with the ILO and the WHO
- Electromagnetic Fields, vol. 1, Non-binding guide to
good practice for implementing Directive
2013/35/EU, European Commission, Brussels,
Belgium, 2015.
Retrieved from:
https://www.gla.ac.uk/media/Media_604615_smxx .pdf - М. Израел, Изследване на радиочестотните електромагнитни полета като трудовохигиенен фактор и сравнение на методите на еластограмата и реограмата при електромагнитно въздействие върху човека, дисертационен труд, МА, София 1983(M. Israel, Investigation of radio frequency electromagnetic fields as a factor in different occupations and comparison of elastogram and rheogram methods in case of electromagnetic impact on humans, PhD Thesis, National Institute of Hygiene and professional diseases, Sofia, Bulgaria, 1983)
- B. Kolmodin-Hedman, K. Hansson Mild, M.
Hagberg, E. Jönsson, M.C. Andersson, A. Eriksson,
“Health problems among operators of plastic
welding machines and exposure to radiofrequency
electromagnetic fields”, Int Arch Occup Environ
Health., vol. 60, pp. 243-247, 1988.
https://doi.org/10.1007/BF00378471 - J. Wilén, R. Hörnsten, M. Sandström, P. Bjerle, U.
Wiklund, O. Stensson, E. Lyskov, K. Mild,
“Electromagnetic field exposure and health among
RF plastic sealer operators”, Biolelectromagnetics,
vol. 25, no. 1, pp. 5–15, 2004.
https://doi.org/10.1002/bem.10154 - M. Israel, K. Vangelova, D. Velkova, M. Ivanova,
“Cardiovascular risk under electromagnetic exposure
in physiotherapy”, Environmentalist, vol. 27, pp.
539-543, 2007.
https://doi.org/10.1007/s10669-007-9065-0 - K. Vangelova, M. Israel, D. Velkova, M. Ivanova,
“Changes in excretion rate of stress hormones in
medical staff exposed to electromagnetic radiation”,
Environmentalist, pp. 552-555, 2007.
https://doi.org/10.1007/s10669-007-9063-2 - The Council of European Union. (Jul. 12, 1999).
Council Recommendation 1999/519/EC on the
limitation of exposure of the general public to
electromagnetic fields (0 Hz to 300 GHz).
Retrieved from:
https://op.europa.eu/en/publication-detail/- /publication/9509b04f-1df0-4221-bfa2- c7af77975556/language-en
Retrieved on: Dec. 14, 2020 - Opinion on Potential health effects of exposure to
electromagnetic fields (EMF), SCENIHR, European
Commission, 2015.
http://doi.org/10.2772/75635 - R. Stam, “Occupational exposure to radiofrequency
electromagnetic fields”, Industrial Health, vol.
60, no. 3, pp. 201-215, 2022.
http://doi.org/10.2486/indhealth.2021-0129
THE USE OF ORGANIC MATERIAL MAKROCLEAR FOR RADIOCHROMIC INTEGRATING DOSIMETRY OF HADRON BEAMS
David Zoul, Václav Zach, Jan Štursa
Received: 5 SEP 2024, Received revised: 25 NOV 2024, Accepted: 26 DEC 2024, Published online: 30 JAN 2025
Abstract | References | Cite This | Full Text (PDF)
- A. Shamshad, M. Rashid, A. Husain, "High gamma
dose dosimetry by polycarbonates", Radiat. Phys.
Chem., vol. 50, no. 3, pp. 307-311, 1997.
https://doi.org/10.1016/S0969-806X(97)00038-8 - A.M.S. Galante, L.L. Campos, "Characterization of
polycarbonate dosimeter for gamma-radiation
dosimetry",
P04-15, pp. 815-819, Helsinki, Finland, 2010.
http://www.irpa2010europe.com/pdfs/proceedings/S 04-P04.pdf - A.M.S. Galante, L.L. Campos, "Mapping radiation
fields in containers for industrial -irradiation using
polycarbonate dosimeters", Appl. Radiat. Isot., vol. 70,
no. 7, pp. 1264-1266, 2012.
https://doi.org/10.1016/j.apradiso.2011.12.046 - D. Zoul, M. Cabalka, M. Koplová, "A study of using
polycarbonate as a reusable radiochromic integrating
dosimeter for the determination of high doses of
ionizing radiation", RAD Conference Proceedings, vol.
3, pp. 138-142, 2018.
https://doi.org/10.21175/RadProc.2018.30 - D. Zoul, "Studie využití polykarbonátu pro integrující dozimetrii vysokých dávek ionizujícího záření (Study of the use of polycarbonate for integrating dosimetry of high doses of ionizing radiation)", Bezpečnost jaderné energie (Nuclear power safety), vol. 25, no. 6, pp. 141- 149, 2017.
- V. Serini, "Polycarbonates", Ullmann's Encyclopedia of
Industrial Chemistry, Wiley-VCH, Weinheim, 2000.
https://doi.org/10.1002/14356007.a21_207 - L. Zhao, I. J. Das. Gafchromik EBT film dosimetry in
proton beams. Phys Med Biol., vol. 55, pp. 291-301,
2010.
https://doi.org/10.1115/1.4049717 - S. Devic, N. Tomic, D. Lewis, “Reference radiochromic
film dosimetry: Review of technical aspects”, Physical
Media, vol. 32, issue 4, pp 541-556, 2016.
https://doi.org/10.1016/j.ejmp.2016.02.008 - A. Niroomand-Rad, S.-T. Chiu-Tsao, M. P. Grams, D. F. Lewis, C. G. Soares, L, J. Van Battum, I. J. Das, S. Trichter, M. W. Kissick, G. Massillon-JL, P. E. Alvarez, M. F. Chan, “Report of AAPM Task Group 235 Radiochromic Film Dosimetry: An Update to TG-55”, Med. Phys., vol 47, pp. 5986-6025, 2020. https://doi.org/10.1002/mp.14497
- C.-M. Charlie Ma, T. Lomax“Proton and Carbon Ion
Therapy”, Imaging in Medical Diagnosis and
Therapy 1st Edition, 2012.
https://doi.org/10.1201/b13070 - D. Zoul, Radiace která léčí – část čtvrtá (Radiation that Heals – Part Four), Aldebaran Bulletin, 27/2021, https://www.aldebaran.cz/bulletin/2021_27_rad.php
- Nuclear physics institute CAS http://www.ujf.cas.cz/en/
- D. Zoul, M. Koplová, V. Rosnecký, M. Košťál, M. Vinš,
J. Šimon. M. Schulc, M. Cabalka, J. Kučera, V. Strunga,
“The use of Polycarbonate as dosimeter of high dose”,
ASME J. Nucl. Eng. Radiat. Sci., vol. 7, pp. 220031-
220035, 2021.
https://doi.org/10.1115/1.4049717 - D. Zoul, M. Koplová, V. Rosnecký, H. Štěpánková, V. Římal, J. Štěpánek, P. Mojzeš, M. Procházka, "Studium molekulárních mechanismů radiochromického jevu v polykarbonátu (Study of molecular mechanisms of radiochromic effect in polycarbonate)", Bezpečnost jaderné energie (Nuclear power safety), vol. 26, no. 64, pp. 338-346, 2018.
- D. Zoul, "Studie tmavnutí polykarbonátových desek v poli ionizujícího záření, (A study of the changes in optical density of the polycarbonate plates in the field of ionizing radiation)", Bezpečnost jaderné energie (Nuclear power safety), vol. 24, no. 62, pp. 33-38, 2016.
- D. Zoul, M. Koplová, M. Zimina, O. Libera, V.
Rosnecký, M. Košťál, J. Šimon, M. Schulc, M. Vinš, M.
Cabalka, J. Kučera, V. Strunga, H. Štěpánková, V.
Římal, J. Čížek, J. Štěpánek, M. Procházka, “Study of
chemical processes in irradiated polycarbonate in the
context of its applicability for integrating dosimetry of
high doses”, Radiat. Phys. Chem., vol. 177, pp. 1-33,
2020.
https://doi.org/10.1016/j.radphyschem.2020.109203
EVALUATION OF THE ASSESSMENT DOSE WITH BIODOSIMETRY METHODS, APPLICABLE IN BULGARIA. USE OF DICENTRIC CHROMOSOMAL ASSAY (DCA) AND CYTOKINESIS-BLOCK MICRONUCLEUS ASSAY
Galina Racheva
Received: 24 SEP 2024, Received revised: 18 NOV 2024, Accepted: 17 DEC 2024, Published online: 30 JAN 2025
Abstract | References | Cite This | Full Text (PDF)
- A.S. Balajee, H.C. Turner, R.C. Wilkins, “Radiation
Biodosimetry: Current Status and Future Initiatives”
Cytogenet. Genome Res., vol. 163, no. 3-4, pp. 85–88,
2023.
https://doi.org/10.1159/000535488 - R. Havránková, “Biological effects of ionizing
radiation”, Cas Lek Cesk, vol. 159. No. 7-8, pp. 258-
260, 2020.
Retrieved from: www.europepmc.org/abstract/MED/33445930 - R. Mendelson, “Informed consent for stochastic
effects of ionising radiation in diagnostic imaging”,
Br. J. Radiol., vol. 95, no. 1132, pp. 2021126-1-3,
2022.
https://doi.org/10.1259/bjr.20211265 - R. M’Kacher, B. Colicchio, C. Borie, S. Junker, V.
Marquet, L. Heidingsfelder, K. Soehnlen, W. Najar,
W.M. Hempel, N. Oudrhiri, et al., “Telomere and
Centromere Staining Followed by M-FISH Improves
Diagnosis of Chromosomal Instability and Its Clinical
Utility”, Genes, vol. 1, no. 5, pp. 475-1-17, 2020
https://doi.org/10.3390/genes11050475 - H. Romm, R.C. Wilkins, C.N. Coleman, et al.,
“Biological dosimetry by the triage dicentric
chromosome assay: potential implications for
treatment of acute radiation syndrome in radiological
mass casualties”, Radiat. Res., vol. 175, no. 3, pp. 397-
404, 2011.
https://doi.org/10.1667/rr2321.1 - H. Nobuyuki, F. Yuki, “Classification of radiation
effects for dose limitation purposes: history, current
situation and future prospects”, J. Radiat. Res., vol.
55, no. 4, pp. 629-640, 2014.
https://doi.org/10.1093/jrr/rru019 - C. Herate, L. Sabatier, “Retrospective biodosimetry
techniques: Focus on cytogenetics assays for
individuals exposed to ionizing radiation”, Mutat.
Res./Rev. Mutat. Res., vol. 783, 108287, 2020.
https://doi.org/10.1016/j.mrrev.2019.108287 - International Atomic Energy Agency. Cytogenetic
Analysis for Radiation Dose Assessment. Manual.
Technical reports series, 2001, no. 405, Vienna, IAEA.
Retrieved from:
https://www.iaea.org/publications/6303/cytogenetic
-analysis-for-radiation-dose-assessment
Retrieved on: Sept. 24, 2024. - International Organization for Standardization (ISO) Radiation protection—performance criteria for service laboratories performing biological dosimetry by cytogenetics ISO 19238, Geneva: ISO, 2014.
- S. Jang, J. Lee, S.H. Kim, S. Han, S.G. Shin, S. Lee, I.
Kang, W.S. Jo, S. Jeong, S.J. Oh, C.G. Lee, “Radiation
dose estimation with multiple artificial neural
networks in dicentric chromosome assay”, Int. J.
Radiat. Biol., vol. 100, no. 6, pp. 865-874, 2024.
https://doi.org/10.1080/09553002.2024.2338531 - U. Oestreicher, D. Samaga, E. Ainsbury et al.,
“RENEB intercomparisons applying the conventional Dicentric Chromosome Assay (DCA)”, Int. J. Radiat.
Biol., vol. 93, no. 1, pp. 20-29, 2017.
https://doi.org/10.1080/09553002.2016.1233370 - F.N. Flegal, Y. Devantier, J.P. McNamee R.C. Wilkins,
“Quick scan dicentric chromosome analysis for
radiation biodosimetry”, Health Phys., vol. 98, no. 2,
pp. 276-281, 2010.
https://doi.org/10.1097/HP.0b013e3181aba9c7 - H. Thierens, A. Vral, “The micronucleus assay in
radiation accidents”, Ann. Ist. Super Sanita, vol. 45,
no. 3, pp. 260-264, 2009.
Retrieved from: https://www.iss.it/documents/20126/45616/ANN_09_33_Thierens.pdf/16f376be-1fac-e656-3b4a- cc57c47691e7?t=1581100041525 - T. Rich, R.L. Allen, A.H. Wyllie, “Defying death after
DNA damage”, Nature, vol. 407, pp. 777-783, 2000.
https://doi.org/10.1038/35037717 - P.G. Prasanna, M. Moroni, T.C. Pellmar, “Triage dose
assessment for partial-body exposure: Dicentric
analysis”, Health Phys., vol. 98, no. 2, pp. 244–251,
2010.
https://doi.org/10.1097/01.HP.0000348020.14969.4 - E.E. Manasanch, R.Z. Orlowski, “Proteasome
inhibitors in cancer therapy”, Nat. Rev. Clin. Oncol.,
vol. 14, no. 7, pp. 417-433, 2017.
https://doi.org/10.1038/nrclinonc.2016.206 - C. Beinke, M. Port, A. Riecke, C.G. Ruf, M. Abend,
“Adaption of the Cytokinesis-Block Micronucleus
Cytome Assay for Improved Triage Biodosimetry”,
Radiation Research, vol. 185, no. 5, pp.461-472,
2016.
https://doi.org/10.1667/rr14294.1 - M. Simonian, D. Shirasaki, V.S. Lee, D. Bervini, M.
Grace, R.R.O. Loo, et al., “Proteomics identif ication
of radiation-induced changes of membrane proteins
in the rat model of arteriovenous malformation in
pursuit of targets for brain AVM molecular therapy”,
Clin. Proteomics, vol. 15, pp. 43-1-8, 2018.
https://doi.org/10.1186/s12014-018-9217-x - P. Voisin, “Standards in biological dosimetry: a
requirement to perform an appropriate dose
assessment”, Mutat. Res. Genet. Toxicol. Environ.
Mutagen., vol. 793, pp. 115–122, 2015.
https://doi.org/10.1016/j.mrgentox.2015.06.012 - K. Rothkamm, C. Beinke, H. Romm et al,
“Comparison of established and emerging
biodosimetry assays”, Radiat. Res., vol. 180, no. 2,
pp. 111–119, 2013.
https://doi.org/10.1667/RR3231.1 - B.L. Mahaney, K. Meek, S.P. Lees-Miller, “Repair of
ionizing radiation-induced DNA double-strand breaks
by non-homologous end-joining”, Biochem J., vol.
417, no. 3, pp. 639-650, 2009.
https://doi.org/10.1042/BJ20080413 - A. Léonard, J. Rueff, G.B. Gerber, E.D. Léonard,
“Usefulness and limits of biological dosimetry based
on cytogenetic methods”, Radiat. Prot. Dosim., vol.
115, no. 1-4, pp. 448-454, 2005.
https://doi.org/10.1093/rpd/nci061 - L.M. Odetti, E.V. Paravani, et al., “Micronucleus test
in reptiles: Current and future perspectives”, Mutat.
Res. Genet. Toxicol. Environ. Mutagen., vol. 897, p.
50377, 2024.
https://doi.org/10.1016/j.mrgentox.2024.503772 - A. Shibai-Ogata, C. Kakinuma, T. Hioki, T. Kasahara,
“Evaluation of high-throughput screening for in vitro
micronucleus test using fluorescence-based cell
imaging”, Mutagenesis, vol. 26, no. 6, pp. 709-719,
2011.
https://doi.org/10.1093/mutage/ger037 - M. Repin, G. Garty, R.J. Garippa, D.J. Brenner,
“RABiT-III: an Automated Micronucleus Assay at a
Non-Specialized Biodosimetry Facility”, Radiat Res.,
vol. 201, no. 6, pp. 567-571, 2024.
https://doi.org/10.1667/rade-23-00120.1 - A. Vral, M. Fenech, H. Thierens, “The micronucleus
assay as a biological dosimeter of in vivo ionising
radiation exposure”, Mutagenesis, vol. 26, no. 1,
pp.11–17, 2011.
https://doi.org/10.1093/mutage/geq078 - M.T. Sproull, K.A. Camphausen, G.D. Koblentz,
“Biodosimetry: A Future Tool for Medical
Management of Radiological Emergencies”, Health
Security, vol. 15, no. 6, pp. 599-610, 2017.
https://doi.org/10.1089/hs.2017.0050
IN SITU TESTING OF A PROTOTYPE OF A LASER DOSIMETRY PROBE WITH WIRELESS DATA TRANSMISSION BASED ON THE RADIOCHROMIC PHENOMENON IN AN ORGANIC DETECTION ELEMENT
David Zoul, Hana Vodičková, Jan Vít
Received: 5 SEP 2024, Received revised: 4 DEC 2024, Accepted: 9 JAN 2025, Published online: 12 FEB 2025
Abstract | References | Cite This | Full Text (PDF)
- D. Zoul, M. Cabalka, M. Koplová, “A study of using
polycarbonate as a reusable radiochromic integrating
dosimeter for the determination of high doses of
ionizing radiation”, RAD Conference Proceedings,
vol. 3, pp. 138-142, 2018.
https://doi.org/10.21175/RadProc.2018.30 - D. Zoul, M. Cabalka, M. Koplová, “Studie využití polykarbonátu pro integrující dozimetrii vysokých dávek ionizujícího záření (Study of the use of polycarbonate for integrating dosimetry of high doses of ionizing radiation)”, Bezpečnost jaderné energie (Nuclear power safety), vol. 25, no. 63, pp. 141-149, 2017.
- D. Zoul, “A study of the changes in optical density of the polycarbonate plates in the field of ionizing radiation”, Bezpečnost jaderné energie (Nuclear power safety), vol. 24, no. 62, pp. 33-38, 2016.
- D. Zoul, M. Koplová, V. Rosnecký, H. Štěpánková, V. Římal, J. Štěpánek, P. Mojzeš, M. Procházka, “A study of the molecular mechanisms of the radiochromic effect in the polycarbonate”, Nuclear power safety, vol. 26, no. 64, pp. 338-346, 2018.
- D. Zoul, M. Koplová, O. Libera, M. Zimina, V.
Rosnecký, M. Košťál, M. Cabalka, J. Kučera, V.
Strunga, H. Štěpánková, V. Římal, J. Čížek, J.
Štěpánek, M. Procházka, “Study of chemical
processes in irradiated polycarbonate in the context
of applicability for integrating dosimetry of high
doses”, Radiat. Phys. Chem., vol. 177, pp. 1-33, 2020.
https://doi.org/10.1016/j.radphyschem.2020.109203 - D. Zoul, M. Koplová, V. Rosnecký, M. Košťál, M.
Vinš, J. Šimon, M. Schulc, M. Cabalka, J. Kučera, V.
Strunga, “The use of Polycarbonate as dosimeter of
high doses”, J. Nucl. Eng. Radiat. Sci., vol. 7, pp.
220031-220035, 2021.
https://doi.org/10.1115/1.4049717 - V. Serini, "Polycarbonates", Ullmann's Encyclopedia
of Industrial Chemistry, Wiley-VCH, Weinheim,
2000.
https://doi.org/10.1002/14356007.a21_207 - A. Shamshad, M. Rashid, A. Husain, "High gamma
dose dosimetry by polycarbonates", Radiat. Phys.
Chem., vol. 50, no. 3, pp. 307-311, 1997.
https://doi.org/10.1016/S0969-806X(97)00038-8 - A.M.S. Galante, L.L. Campos, "Characterization of
polycarbonate dosimeter for gamma-radiation
dosimetry", Proceedings of 3rd Europian IRPA
Congress, Session S04Dosimetry P04-15, pp. 815-
819, Helsinki, Finland, 2010.
http://www.irpa2010europe.com/pdfs/proceedings/S04- P04.pdf - A.M.S. Galante, L.L. Campos, "Mapping radiation
fields in containers for industrial -irradiation using
polycarbonate dosimeters", Appl. Radiat. Isot., vol.
70, no. 7, pp. 1264-1266, 2012.
https://doi.org/10.1016/j.apradiso.2011.12.046 - A. Jančář, J. Čulen, B. Mikel, M. Jelínek, F. Mravec, V. Přenosil, Z Matěj. “Development of a high range gamma detector with optical fiber for long transmission”, International Conference on Radiation Applications (RAP 2022), Book of Abstracts, 2022.
RADIATION PROTECTION AT THE ELI BEAMLINES LASER FACILITY
Benoit Lefebvre, Anna Cimmino, Dávid Horváth, Roman Truneček, Roberto Versaci, Srimanta Maity, Mihail Miceski, Alexander Molodozhentsev, Uddhab Chaulagain, Veronika Olšovcová
Received: 31 OCT 2024, Received revised: 6 JAN 2025, Accepted: 20 JAN 2025, Published online: 23 FEB 2025
Abstract | References | Cite This | Full Text (PDF)
- G. Korn et al., “ELI - Extreme Light Infrastructure Whitebook”, Science and Technology with Ultra- Intense Lasers, THOSS Media GmbH, 2011. https://eli-laser.eu/media/1019/eli-whitebook.pdf
- A. Cimmino et al., “Radiation Protection at Petawatt Laser-Driven Accelerator Facilities: The ELI Beamlines
Case”, Nucl. Scienc. Eng., vol. 198, no. 2, 245–263,
2024.
https://doi.org/10.1080/00295639.2023.2191585 - F. Batysta et al., “Pulse synchronization system for
picosecond pulse-pumped OPCPA with femtosecond-
level relative timing jitter”, Opt. Express, vol. 22, no.
2, pp. 106-30281-30286, 2014.
https://doi.org/10.1364/OE.22.030281 - J. T. Green et al., “L2-DUHA 100 TW High Repetition
Rate Laser System at ELI-Beamlines: Key Design
Considerations”, Rev. Laser Eng., vol. 49, no. 2, pp.
106-109, 2021.
https://doi.org/10.2184/lsj.49.2_106 - E. Sistrunk et al., “All Diode-Pumped, High-repetition-
rate Advanced Petawatt Laser System (HAPLS)”,
Conference on Lasers and Electro-Optics, OSA Technical Digest, 2017, paper STh1L.2.
https://doi.org/10.1364/CLEO_SI.2017.STh1L.2 - F. Batysta et al., “Spectral pulse shaping of a 5 Hz,
multi-joule, broadband optical parametric chirped
pulse amplification frontend for a 10 PW laser system”,
Opt. Lett., vol. 43, no. 16, pp. 3866-3869, 2018.
https://doi.org/10.1364/OL.43.003866 - S. Weber et al., “P3: an installation for high-energy
density plasma physics and ultra-high intensity laser-
matter interaction at ELI-Beamlines”, Matter Radiat.
Extremes, vol. 2, pp. 149-176, 2017.
https://doi.org/10.1016/j.mre.2017.03.003 - F. Schillaci et al., “The ELIMAIA Laser–Plasma Ion
Accelerator: Technological Commissioning and
Perspectives”, Quantum Beam Sci., vol. 6, no. 4, pp.
30-1-23, 2022.
https://doi.org/10.3390/qubs6040030 - G.A.P. Cirrone et al., “ELIMED-ELIMAIA: The First
Open User Irradiation Beamline for Laser-Plasma-
Accelerated Ion Beams”, Front. Phys., vol. 8, pp.
564907-1-8, 2020.
https://doi.org/10.3389/fphy.2020.564907 - E. A. Vishnyakov et al., “Compact undulator-
based soft x-ray radiation source at ELI Beamlines:
user-oriented program”, Proc. SPIE 12582, Compact
Radiation Sources from EUV to Gamma-rays:
Development and Applications, 12582, pp. 1258209-1-
10, 2023.
https://doi.org/10.1117/12.2665377 - G. Grittani et al., “ELI-ELBA: fundamental
science investigations with high power lasers at ELI-
Beamlines”, OSA High-brightness Sources and Light-
driven Interactions Congress, Optica Publishing
Group, JM3A.20, 2020.
https://doi.org/10.1364/EUVXRAY.2020.JM3A.20 - U. Chaulagain et al., “ELI Gammatron Beamline:
A Dawn of Ultrafast Hard X-ray Science”, Photonics,
vol. 9, no. 11, pp. 853-1-23, 2022.
https://doi.org/10.3390/photonics9110853 - C.M. Lazzarini et al., “Ultrarelativistic electron
beams accelerated by terawatt scalable kHz laser”,
Phys. Plasmas, vol. 31, no. 3, pp. 030703-1-6, 2024.
https://doi.org/10.1063/5.0189051 - Extreme Light Infrastructure ERIC, “ELI User Portal”, Website (current as of Oct. 31, 2024) URL: https://up.eli-laser.eu
- Státní úřad pro jadernou bezpečnost, “Atomic Law”, (current as of Oct. 31, 2024) (in Czech). https://www.sujb.cz/legislativa/atomove-pravo
- Member States of the European Union, “Consolidated version of the Treaty establishing the European Atomic Energy Community”, OJ C 203, 7.6.2016, p. 1–112, 2016. http://data.europa.eu/eli/treaty/euratom_2016/oj
- C. Ahdida et al, “New Capabilities of the FLUKA
Multi-Purpose Code”, Front. Phys., vol. 9, pp. 788253-
1-14, 2022.
https://doi.org/10.3389/fphy.2021.788253 - G. Battistoni et al., “Overview of the FLUKA
code”, Ann. Nucl. Energy, vol. 82, pp. 10-18, 2015.
https://doi.org/10.1016/j.anucene.2014.11.007 - V. Vlachoudis, “FLAIR: A Powerful But User
Friendly Graphical Interface For FLUKA”, in Proc. Int.
Conf. on Mathematics, Computational Methods &
Reactor Physics, 2009.
https://cds.cern.ch/record/2749540 - T.D. Arber et al., “Contemporary particle-in-cell
approach to laser-plasma modeling”, Plasma Phys.
Control. Fusion, vol. 57, no. 11, pp. 113001-1-26, 2015.
https://doi.org/10.1088/0741-3335/57/11/113001 - C. Sneha, “ICRU report 95 - Operational
quantities for external radiation exposure”, Rad. Prot.
Env., vol. 44, no. 2, pp. 116-119, 2021.
https://dx.doi.org/10.4103/rpe.rpe_38_21
ASTATINE-211 AS AN EMERGING RADIOISOTOPE FOR TARGETED ALPHA THERAPY (TAT)
Paulina Apostolova, Jean Francois-Gestin, Sanja Vranjes-Djuric, Marija Arev, Emilija Janevik - Ivanovska
Received: 24 NOV 2024, Received revised: 6 FEB 2025, Accepted: 18 FEB 2025, Published online: 8 MARCH 2025
Abstract | References | Cite This | Full Text (PDF)
- National Cancer Institute. “Types of cancer treatment.”
U.S. Department of Health and Human Services.
Retrieved from: https://www.cancer.gov/about- cancer/treatment/types
Retrieved on: Aug. 20, 2024 - G. Sgouros, L. Bodei, M.R. McDevitt, J.R. Nedrow,
‘’Radiopharmaceutical therapy in cancer: clinical
advances and challenges”, Nat. Rev.Drug Discov., vol. 19,
pp. 589–608, 2020.
https://doi.org/10.1038/s41573-020-0073-9 - S.M. Qaim, “Therapeutic radionuclides and nuclear data”,
Radiochima Acta, vol. 89, no.4-5, pp. 297–304, 2001.
https://doi.org/10.1524/ract.2001.89.4-5.297 - A. Yordanova, E. Eppard, S. Kürpig, R.A. Bundschuh, S.
Schönberger, M. Gonzalez-Carmona, G. Feldmann, H.
Ahmadzadehfar, M. Essler, “Theranostics in nuclear
medicine practice” Onco Targets Ther., vol. 10, pp. 4821–
4828, 2017.
https://doi.org/10.2147/OTT.S140671 - S. Salih, A. Alkatheeri, W. Alomaim, A. Elliyanti,
“Radiopharmaceutical Treatments for Cancer Therapy, Radionuclides Characteristics, Applications, and
Challenges”, Molecules, vol. 27, no. 16, p. 5231, 2022.
https://doi.org/10.3390/molecules27165231 - Ø.S. Bruland, R.H. Larsen, R.P. Baum, A. Juzeniene,
“Editorial: Targeted alpha particle therapy in oncology”.
Front. Med., vol. 10, p. 1165747, 2023.
https://doi.org/10.3389/fmed.2023.1165747 - G. Sgouros, A.M. Ballangrud, J.G. Jurcic, M.R. McDevitt, J.L. Humm, Y. E. Erdi, B.M. Mehta, R.D. Finn, S.M. Larson, D.A. Scheinberg, “Pharmacokinetics and dosimetry of an α-particle emitter antibody: 213Bi-HuM195 (anti-CD33) in patients with leukemia”, J.Nucl.Med., vol. 40, no. 11, pp 1935–1946, 1999.
- European Pharmaceutical Review, "The future of targeted
alpha therapy: development and manufacture".
Retrieved from:
https://www.europeanpharmaceuticalreview.com/article/217962/the-future-of-targeted-alpha-therapy- development-and-manufacture/
Retrieved on: Aug. 16, 2024. - U.S. National Library of Medicine, ClinicalTrials.gov.
"Search Results for 'Targeted Alpha Therapy and Cancer"
Retrieved from:
https://clinicaltrials.gov/search?cond=Cancer&intr=targe
ted%20alpha%20therapy&sort=StudyFirstPostDate.
Retrieved on: Aug. 31, 2024. - F.D.C. Guerra Liberal, J.M. O'Sullivan, S.J. McMahon,
K.M. Prise, “Targeted Alpha Therapy: Current Clinical
Applications”, Cancer Biother. Radiopharm., vol. 35, no
6, pp. 404-417, 2020.
https://doi.org/10.1089/cbr.2020.3576 - R. Eychenne, M. Chérel, F. Haddad, F. Guérard, J.F.
Gestin, “Overview of the Most Promising Radionuclides
for Targeted Alpha Therapy: The "Hopeful Eight",
Pharmaceutics, vol. 13, no. 6, pp. 906-1-50, 2021.
https://doi.org/10.3390/pharmaceutics13060906 - Y.S. Kim, M.W. Brechbie. “An overview of targeted alpha
therapy”, Tumour Biol, vol. 33, no. 3, pp. 573-590, 2012.
https://doi.org/10.1007/s13277-011-0286-y - O. Couturier, S. Supiot, M. Degraef-Mougin, A. Alain
Faivre-Chauvet, T. Carlier, J.-F. Chatal, F. Davodeau, M.
Cherel, “Cancer radioimmunotherapy with alpha-emitting
nuclides”, Eur J Nucl Med Mol Imaging, vol. 32, no. 5, pp.
601-614, 2005.
https://doi.org/10.1007/s00259-005-1803-2 - T.G.A. Reuvers, R. Kanaar, J.Nonnekens, “DNA Damage-
Inducing Anticancer Therapies: From Global to Precision Damage”, Cancers, vol. 12, pp. 2098-1-22, 2020.
https://doi.org/10.3390/cancers12082098 - J. P. Pouget, J. Constanzo. “Revisiting the Radiobiology of
Targeted Alpha Therapy”, Frontiers in medicine, vol. 8,
692436, 2021.
https://doi.org/10.3389/fmed.2021.692436 - I.A. Kassis, S.J. Adelstein, “Radiobiologic principles of radionuclide therapy”, J. Nucl. Med, vol. 46, suppl. 1, pp. 4S–12S, 2005.
- T. Jabbar, S. Bashir, M. I. Babar, “Review of current status
of targeted alpha therapy in cancer treatment”, Nuclear
medicine review. Central & Eastern Europe, vol. 26, no.
0, pp. 54–67, 2023.
https://doi.org/10.5603/NMR.2023.0003 - J. Elgqvist, S. Frost, J.P. Pouget, P. Albertsson, “The
potential and hurdles of targeted alpha therapy - clinical
trials and beyond”, Front Oncol., vol. 3, no. 324, 2014.
https://doi.org/10.3389/fonc.2013.00324 - A. Jang, A.T. Kendi, G.B. Johnson, T.R. Halfdanarson, O.
Sartor, “Targeted Alpha-Particle Therapy: A Review of
Current Trials”, Int. J. Mol. Sci., vol. 24, no. 14, p. 11626-
1-15, 2023.
https://doi.org/10.3390/ijms241411626 - M. Miederer, M. Benešová-Schäfer, C. Mamat, D. Kästner,
M. Pretze, E. Michler, C. Brogsitter, J. Kotzerke, K. Kopka,
D.A Scheinberg, M.R. McDevitt, “Alpha-Emitting Radionuclides: Current Status and Future
Perspectives”, Pharmaceuticals, vol. 17, p. 76, 2024.
https://doi.org/10.3390/ph17010076 - M.R. McDevitt, R.D. Finn, D. Ma, S.M. Larson, D.A. Scheinberg, “Preparation of alpha-emitting 213Bi-labeled antibody constructs for clinical use”, J. Nucl. Med., vol. 40, no. 10, pp. 1722–1727, 1999.
- S. Heeger, G. Moldenhauer, G. Egerer,
T. Nikula, C. Apostolidis, M. Brechbiel, U. Haberkorn, A.
D. Ho, R. Haas, “Alpha radioimmunotherapy of B-lineage
non-Hodgkin’s lymphoma using 213Bi-labeled anti-CD19-
and anti-CD20-CHX-A”-DTPA conjugates”, J. Clin.
Oncol., vol. 22, no. S14, p. 2625, 2004.
https://doi.org/10.1200/jco.2004.22.90140.2625 - B.J. Allen, A.A. Singla, S.M. Rizvi, P. Graham, F.
Bruchertseifer, C. Apostolidis, A. Morgenstern, “Analysis
of patient survival in a phase I trial of systemic targeted a-
therapy for metastatic melanoma”, Immunotherapy, vol.
3, no. 9, pp. 1041-1050, 2011.
https://doi.org/10.2217/imt.11.97 - M.E. Autenrieth, C. Seidl, F. Bruchertseifer, T. Horn, F.
Kurtz, B. Feuerecker, C. D'Alessandria, C. Pfob , S.
Nekolla, C. Apostolidis , S. Mirzadeh, J. E. Gschwend, M.
Schwaiger , K. Scheidhauer , A. Morgenstern, “Treatment
of carcinoma in situ of the urinary bladder with an alpha-
emitter immunoconjugate targeting the epidermal growth
factor receptor: A pilot study”, Eur. J. Nucl. Med. Mol.
Imaging, vol. 45, pp. 1364-1371, 2018.
https://doi.org/10.1007/s00259-018-4003-6 - D. Cordier, F. Forrer, F. Bruchertseifer, A. Morgenstern,
C. Apostolidis, S. Good, J. Müller-Brand, H. Mäcke, J.C.
Reubi, A. Merlo, “Targeted alpha-radionuclide therapy of
functionally critically located gliomas with 213Bi-
DOTA[Thi8,Met(O2)11]-substance P: A pilot trial”,Eur. J.
Nucl. Med. Mol. Imaging, vol. 37, pp. 1335-1344, 2010.
https://doi.org/10.1007/s00259-010-1385-5 - C. Kratochwil, F.L. Giesel, F. Bruchertseifer W. Mier, C.
Apostolidis, R. Boll, K. Murphy, U. Haberkorn & A.
Morgenstern, “
213Bi-DOTATOC receptor-targeted alpha-
radionuclide therapy induces remission in
neuroendocrine tumours refractory to beta radiation: A
first-in-human experience”, Eur. J. Nucl. Med. Mol.
Imaging, vol. 41, pp. 2106-2119, 2014.
https://doi.org/10.1007/s00259-014-2857-9 - U.S. National Library of Medicine, ClinicalTrials.gov.
"Search Results for 212Pb".
Retrieved from:
https://clinicaltrials.gov/search?intr=212Pb&limit=50&p age=1
Retrieved on: Sep. 02, 2024. - Production and Quality control of Actinium-225
radiopharmaceuticals, IAEA-TECDOC-2057, IAEA,
Vienna, Austria, 2024, pp. 1-62.
https://doi.org/10.61092/iaea.95h3-2ji2
Retrieved from:
https://www.iaea.org/publications/15707/production- and-quality-control-of-actinium-225-radiopharmaceuticals - U.S. National Library of Medicine, ClinicalTrials.gov.
"Search Results for actinium-225 and Ac-225".
https://clinicaltrials.gov/search?term=actinium-225
Retrieved on: Jan. 23, 2025. - P. G. Kluetz, W. Pierce, V. E. Maher, H. Zhang, S. Tang, P.
Song, Q. Liu, M. T.,Haber, E. E. Leutzinger, A. Al-Hakim,
W. Chen, T. Palmby, E. Alebachew, R. Sridhara, A.
Ibrahim, R. Justice, R. Pazdur, “Radium Ra-223
dichloride injection: U.S. Food and Drug Administration
drug approval summary”, Clin. Cancer Res., vol. 20, no. 1,
pp. 9–14, 2014.
https://doi.org/10.1158/1078-0432.CCR-13-2665 - C. Fry, M. Thoennessen, “Discovery of the astatine, radon,
francium, and radium isotopes”, Atomic Data and
Nuclear Data Tables, vol. 99, no. 5, pp. 497-519, 2013.
https://doi.org/10.1016/j.adt.2012.05.003 - M.B.C. Sevenois, B.WM. Miller, H.J. Jensen,
M.D'Huyvetter, P. Covens, “Optimized cyclotron
production of 211At: The challenge of 210Po-
characterization”, Radiat. Phys. Chem., vol. 212, 111155,
2023.
https://doi.org/10.1016/j.radphyschem.2023.111155 - S. Lindegren, T. Bäck, H.J. Jensen, “Dry-distillation of
astatine-211 from irradiated bismuth targets: a time-
saving procedure with high recovery yields”,Appl. Radiat.
Isot., vol. 55, no. 2, pp. 157-60, 2001.
https://doi.org/10.1016/s0969-8043(01)00044-6 - E.R. Balkin, D.K. Hamlin, K. Gagnon, M.-K. Chyan, S. Pal, Watanabe, S.D.S. Wilbur, “Evaluation of a Wet Chemistry Method for Isolation of Cyclotron Produced [ 211At]Astatine”, Appl. Sci., vol. 3, no. 3, pp. 636-655, 2013 https://doi.org/10.3390/app3030636
- M.R. Zalutsky, D.A. Reardon, O.R. Pozzi, G.
Vaidyanathan, D.D. Bigner, “Targeted alpha-particle
radiotherapy with 211At-labeled monoclonal antibodies”,
Nucl. Med. Biol., vol. 34, no. 7, pp. 779–785, 2007.
https://doi.org/10.1016/j.nucmedbio.2007.03.007 - G. Sgouros et al., MIRD Pamphlet No. 22 (Abridged):
Radiobiology and Dosimetry of α-Particle Emitters for
Targeted Radionuclide Therapy, J. Nucl. Med., vol. 51,
no.2, pp. 311-328, 2010.
https://doi.org/10.2967/jnumed.108.058651 - F. Guérard, C. Maingueneau, L. Liu, R. Eychenne, J.F.
Gestin, G. Montavon, N. Galland, “Advances in the
Chemistry of Astatine and Implications for the
Development of Radiopharmaceuticals”,Acc. Chem. Res.,
vol. 54, no. 16, pp. 3264–3275, 2021.
https://doi.org/10.1021/acs.accounts.1c00327 - Y. Feng and M. R. Zalutsky, “Production, purification and
availability of 211At: term steps towards global access”,
Nucl. Med. Biol., vol. 100-101, pp. 12-23, 2021.
https://doi.org/10.1016/j.nucmedbio.2021.05.007 - R. Eychenne, C. Alliot, J.-F Gestin, F. Guérard,
“Radiolabeling Chemistry with Heavy Halogens Iodine
and Astatine”, Biomedical Sciences, 2021.
https://inserm.hal.science/inserm-03332003 - M. Vanermen, M. Ligeour, M.C. Oliveira, et al. “Astatine-
211 radiolabelling chemistry: from basics to advanced
biological applications”, EJNMMI Radiopharm. Chem.,
vol. 9, no. 69, 2024.
https://doi.org/10.1186/s41181-024-00298-4 - S. Hirata, K. Mishiro, K. Washiyama, M. Munekane, T.
Fuchigami, Y. Arano, K. Takahashi, S. Kinuya, K.
Ogawa,”In Vivo Stability Improvement of Astatobenzene
Derivatives by Introducing Neighboring Substituents”, J
of Med chem, Advance online publication, 2025.
https://doi.org/10.1021/acs.jmedchem.4c02188 - F. Guérard, J.-F. Gestin, M.W. Brechbiel, “Production of
[(211)At]-astatinated radiopharmaceuticals and
applications in targeted α-particle therapy”, Cancer
Biother Radiopharm. vol. 28, no.1, pp. 1-20, 2013.
https://doi.org/10.1089/cbr.2012.1292 - Y.V. Norseev, “Synthesis of astatine-tagged methylene
blue, a compound for fighting micrometastases and
individual cells of melanoma”, J. Radioanal. Nucl. Chem,
vol. 237, pp. 155–158, 1998.
https://doi.org/10.1007/BF02386681 - G. Vaidyanathan, M.R. Zalutsky, “1-(m-
[
211At]astatobenzyl)guanidine: synthesis via astato
demetalation and preliminary in vitro and in vivo
evaluation”, Bioconjug. Chem., vol. 3, no. 6, pp. 499-503,
1992.
https://doi.org/10.1021/bc00018a006 - F. Guérard, L. Navarro, Y.S. Lee, A. Roumesy, C. Alliot, M.
Chérel, M.W. Brechbiel, J.-F. Gestin, “Bifunctional
aryliodonium salts for highly efficient radioiodination and
astatination of antibodies”, Bioorg. Med. Chem., vol. 25,
no. 21, pp. 5975-5980, 2017.
https://doi.org/10.1016/j.bmc.2017.09.022 - M. Berdal, S. Gouard, R. Eychenne et al., “Investigation
on the reactivity of nucleophilic radiohalogens with
arylboronic acids in water: access to an efficient single-
step method for the radioiodination and astatination of
antibodies”, Chem. Sci, vol. 12, no. 4, pp. 1458-1468, 2021.
https://doi.org/10.1039/d0sc05191h - S.W. Reilly, M. Makvandi, K. Xu, R.H. Mach, “Rapid Cu-
Catalyzed [211At]Astatination and [125I]Iodination of
Boronic Esters at Room Temperature” Org. Lett., vol. 20,
no. 7, pp. 1752-1755, 2018.
https://doi.org/10.1021/acs.orglett.8b00232 - G. Vaidyanathan, O.R. Pozzi, J. Choi, X.G. Zhao, S.
Murphy, M.R. Zalutsky, “Labeling Monoclonal Antibody
with α-emitting 211At at High Activity Levels via a Tin
Precursor”, Cancer Biother. Radiopharm., vol. 35, no. 7,
pp. 511-519, 2020.
https://doi.org/10.1089/cbr.2019.3204 - M.R. Zalutsky, P.K. Garg, H.S. Friedman, D.D. Bigner,
“Labeling monoclonal antibodies and F(ab')2 fragments
with the alpha-particle-emitting nuclide astatine-211:
preservation of immunoreactivity and in vivo localizing
capacity”, Proc. Natl. Acad. Sci., vol. 86, no. 18, pp. 7149-
7153, 1989.
https://doi.org/10.1073/pnas.86.18.7149 - S. Lindegren, S. Frost, T. Bäck, E. Haglund, J. Elgqvist, H.
Jensen, “Direct Procedure for the Production of 211At-
Labeled Antibodies with an ε-Lysyl-3-(Trimethylstannyl)
Benzamide”, J. Nucl. Med., vol. 49, no. 9, pp. 1537–1545,
2008.
https://doi.org/10.2967/jnumed.107.049833 - K. Fujiki, Y. Kanayama, S. Yano, N. Sato, T. Yokokita, et
al., “211At-labeled immunoconjugate via a one-pot three-
component double click strategy: practical access to a-
emission cancer radiotherapeutics’’, Chem. Sci., vol. 10,
no. 7, pp. 1936–1944, 2019.
https://doi.org/10.1039/c8sc04747b - U.S. National Library of Medicine, ClinicalTrials.gov.
"Search Results for astatine-211 and At-211".
https://clinicaltrials.gov/search?term=astatine
Retrieved on: Jan. 23, 2025 - https://www.cancer.gov/research/participate/clinical-
trials-search/v?id=NCI-2020-06835&r=1
Retrieved on: Jan. 04, 2025 - P. Albertsson, T. Bäck, K. Bergmark, A. Hallqvist, M.
Johansson, E. Aneheim, S. Lindegren, C. Timperanza, K.
Smerud, S. Palm, “Astatine-211 based radionuclide
therapy: Current clinical trial landscape” Front.Med., vol.
6, no. 9, p. 1076210-1-15, 2023.
https://doi.org/10.3389/fmed.2022.1076210 - J.G. Hamilton, P.W. Durbin, M.W. Parrott.,”
Accumulation of astatine211 by thyroid gland in man”,
Proc. Soc. Exp. Biol. Med., vol. 86, no.2, pp. 366–9, 1954.
https://doi.org/10.3181/00379727-86-21100 - https://www.cost.eu/actions/CA19114/
Retrieved on: Sep. 01, 2024 - Y. Feng and M. R. Zalutsky, “Production, purification and
availability of 211At: term steps towards global access”,
Nucl. Med. Biol., vol. 100-101, pp. 12-23, 2021.
https://doi.org/10.1016/j.nucmedbio.2021.05.007 - https://www.isotopes.gov/WAC
Retrieved on: Sep. 03, 2024
OPTIMIZATION OF THE ACCURACY OF THE ELECTRICAL IMPEDANCE TOMOGRAPHY IMAGES OF THE LUNG
Ivaylo Minev, Vedran Jukic, Teodora Gogova, Nikoleta Traykova
Received: 5 DEC 2024, Received revised: 3 MARCH 2025, Accepted: 10 MARCH 2025, Published online: 21 MARCH 2024
Abstract | References | Cite This | Full Text (PDF)
- S. Leonhardt, B. Lachmann, “Electrical impedance
tomography: The holy grail of ventilation and perfusion
monitoring?”, vol. 38, pp. 1917–1929, 2012.
https://doi.org/10.1007/s00134-012-2684-z - T. Muders, H. Luepschen, C. Putensen, “Impedance
tomography as a new monitoring technique”, Curr Opin
Crit Care, vol. 16, no. 3, pp. 269–275, 2010.
https://doi.org/10.1097/MCC.0B013E3283390CBF - J. M. Constantin, S. Perbet, J. Delmas, E. Futier,
“Electrical impedance tomography: So close to touching
the holy grail”, Critical Care, vol. 18, no. 164, 2014.
https://doi.org/10.1186/cc13979 - B. Vogt et al., “Spatial and temporal heterogeneity of
regional lung ventilation determined by electrical
impedance tomography during pulmonary function
testing”, J Appl Physiol, vol. 113, no. 7, pp. 1154–1161,
2012.
https://doi.org/10.1152/japplphysiol.01630.2011 - R. Bhatia, G.M. Schmölzer, P.G. Davis, D.G. Tingay,
‘Electrical impedance tomography can rapidly detect
small pneumothoraces in surfactant-depleted piglets’,
Intensive Care Med, vol. 38, no. 2, pp. 308–315, 2012.
https://doi.org/10.1007/S00134-011-2421-Z - S. Pulletz et al., “Dynamics of regional lung aeration
determined by electrical impedance tomography in
patients with acute respiratory distress syndrome”,
Multidiscip Respir Med, vol. 7, no. 6, 2012.
https://doi.org/10.1186/2049-6958-7-44 - B. Vogt, Z. Zhao, P. Zabel, N. Weiler, I. Frerichs, “Regional
lung response to bronchodilator reversibility testing
determined by electrical impedance tomography in
chronic obstructive pulmonary disease”, Am J Physiol
Lung Cell Mol Physiol, vol. 311, pp. 8–19, 2016.
https://doi.org/10.1152/ajplung.00463.2015.-Patients - R.E. Serrano et al., “Use of electrical impedance
tomography (EIT) for the assessment of unilateral
pulmonary function”, Physiol Meas, vol. 23, no. 1, p. 211,
2002.
https://doi.org/10.1088/0967-3334/23/1/322 - Z. Zhao, U. Müller-Lisse, I. Frerichs, R. Fischer, K. Möller,
“Regional airway obstruction in cystic fibrosis determined
by electrical impedance tomography in comparison with
high resolution CT”, Physiol Meas, vol. 34, no. 11, 2013.
https://doi.org/10.1088/0967-3334/34/11/N107 - Z. Zhao, D. Steinmann, I. Frerichs, J. Guttmann, K.
Möller, “PEEP titration guided by ventilation
homogeneity: a feasibility study using electrical
impedance tomography”, Crit Care, vol. 14, no. 1, 2010.
https://doi.org/10.1186/CC8860 - P. Blankman, D. Hasan, G.J. Erik, D. Gommers,
“Detection of “best” positive end-expiratory pressure
derived from electrical impedance tomography
parameters during a decremental positive end-expiratory
pressure trial”, Crit Care, vol. 18, no. 3, 2014.
https://doi.org/10.1186/CC13866 - W.R.B. Lionheart, “EIT reconstruction algorithms:
pitfalls, challenges and recent developments”, Physiol
Meas, vol. 25, no. 1, pp. 125–142, 2004.
https://doi.org/10.1088/0967-3334/25/1/021 - J. Karsten, T. Stueber, N. Voigt, E. Teschner, H. Heinze,
“Influence of different electrode belt positions on
electrical impedance tomography imaging of regional
ventilation: A prospective observational study”, Crit Care,
vol. 20, no. 1, 2016.
https://doi.org/10.1186/s13054-015-1161-9 - S. Krueger-Ziolek, B. Schullcke, J. Kretschmer, U. Müller-
Lisse, K. Möller, Z. Zhao, “Positioning of electrode plane
systematically influences EIT imaging”, Physiol Meas, vol.
36, no. 6, pp. 1109–1118, 2015.
https://doi.org/10.1088/0967-3334/36/6/1109 - J. Gao, S. Yue, J. Chen, H. Wang, “Classification of normal
and cancerous lung tissues by electrical impendence
tomography”, Biomed Mater Eng, vol. 24, no. 6, pp.
2229–2241, 2014.
https://doi.org/10.3233/BME-141035 - F. Reifferscheid et al., “Regional ventilation distribution
determined by electrical impedance tomography:
Reproducibility and effects of posture and chest plane”,
Respirology, vol. 16, no. 3, pp. 523–531, 2011.
https://doi.org/10.1111/J.1440-1843.2011.01929.X - C.J.C. Trepte et al., “Electrical impedance tomography
(EIT) for quantification of pulmonary edema in acute lung
injury”, Crit Care, vol. 20, no. 1, p. 6, 2016.
https://doi.org/10.1186/s13054-015-1173-5 - F. Fu et al., “Use of electrical impedance tomography to
monitor regional cerebral edema during clinical dehydration treatment”, PLoS One, vol. 9, no. 12, p.
e113202, 2014.
https://doi.org/10.1371/JOURNAL.PONE.0113202 - S. Hannan, M. Faulkner, K. Aristovich, J. Avery, M.C.
Walker, D.S. Holder, “In vivo imaging of deep neural
activity from the cortical surface during hippocampal
epileptiform events in the rat brain using electrical
impedance tomography”, Neuroimage, vol. 209, p.
116525, 2020.
https://doi.org/10.1016/J.NEUROIMAGE.2020.116525 - J.M. Porcel, M. Azzopardi, C.F. Koegelenberg, F.
Maldonado, N.M. Rahman, Y.C.G. Lee, ‘The diagnosis of
pleural effusions”, Expert Rev Respir Med, vol. 9, no. 6,
pp. 801–815, 2015.
https://doi.org/10.1586/17476348.2015.1098535 - S.A. Paul Chubb and R.A. Williams, “Biochemical Analysis
of Pleural Fluid and Ascites”, Clin Biochem Rev, vol. 39,
no. 2, pp. 39-50, 2018, 2024.
[Online]. Available:
https://pmc.ncbi.nlm.nih.gov/articles/PMC6223608/ - P.W.A. Kunst et al., “Electrical impedance tomography in
the assessment of extravascular lung water in
noncardiogenic acute respiratory failure”, Chest, vol. 116,
no. 6, pp. 1695–1702, 1999.
https://doi.org/10.1378/CHEST.116.6.1695 - “Increasing positive end-expiratory pressure (re-)
improves intraoperative respiratory mechanics and lung
ventilation after prone positioning”, Br J Anaesth, vol.
116, no. 6, pp. 838–846, 2016.
https://doi.org/10.1093/BJA/AEW115 - T. Becher, B. Vogt, M. Kott, D. Schädler, N. Weiler, I.
Frerichs, “Functional Regions of Interest in Electrical
Impedance Tomography: A Secondary Analysis of Two
Clinical Studies”, PLoS One, vol. 11, no. 3, 2016.
https://doi.org/10.1371/JOURNAL.PONE.0152267
FEAR OF COVID-19 AMONG BULGARIAN HEALTHCARE WORKERS AND RECOVERED PATIENTS DURING THE COVID-19 PANDEMIC
Miroslava Petkova, Emil Nikolov
Received: 4 NOV 2024, Received revised: 21 FEB 2025, Accepted: 28 FEB 2025, Published online: 30 MARCH 2025
Abstract | References | Cite This | Full Text (PDF)
- S.A. Lee, “Coronavirus Anxiety Scale: A brief mental
health screener for COVID-19 related anxiety”, Death
Studies, vol. 44, no. 7, pp. 393–401, 2020.
https://doi.org/10.1080/07481187.2020.1748481 - S. Cabarkapa, S.E. Nadjidai, J. Murgier, “The
psychological impact of COVID-19 and other viral
epidemics on frontline HWS and ways to address it: A
rapid systematic review”, Brain, Behavior, &
Immunity - Health, vol. 8, pp. 100144 – 1 -10, 2020.
https://doi.org/10.1016/j.bbih.2020.100144 - K. Vanhaecht, D. Seys, L. Bruyneel., B. Cox, G.
Kaesemans, M. Cloet, K. Van Den Broeck, O. Cools, A.
De Witte, K. Lowet, et al., “COVID-19 is having a
destructive impact on health-care workers’ mental
well-being”, International Journal for Quality in
Health Care, vol. 33, no. 1, pp. mzaa158-1-6, 2021.
https://doi.org/10.1093/intqhc/mzaa158 - U. Jain, “Risk of COVID-19 due to Shortage of
Personal Protective Equipment”, Cereus., vol. 12, no.
6, pp. e8837-1-5, 2020.
https://doi.org/10.7759/cureus.8837 - A. Anand, A. Gupta, S. Sing, S. Pyakurel, R. Karkee, P.
Pyakurel, “Knowledge and attitude regarding the
COVID-19 pandemic among undergraduate health
science students of Nepal: An online survey”, SAGE
Open Med., vol. 11, pp. 1-14, 2023.
https://doi.org/10.1177/20503121231196703 - S. Burrowe, S. Casey, N. Pierre-Josep, S. Talbot, T.
Hall, N. Christian-Brathwaite, M. Del-Carmen, C.
Garofalo, B. Lundberg, P. Mehta, J. Mottl-Santiago, E.
Schechter-Perkins, A. Weber, C. Yarrington, R.
Perkins. “COVID-19 pandemic impacts on mental
health, burnout, and longevity in the workplace
among healthcare workers: A mixed methods study”,
J. Interprof. Educ. Pract., vol. 32, pp. 100661-1-9,
2023.
https://doi.org/10.1016/j.xjep.2023.100661 - E. Nagle, S. Šuriņa, I. Griškēviča, “Healthcare
Workers’ Moral Distress during the COVID-19
Pandemic: A Scoping Review”, Soc. Sci., vol. 12, no. 7,
pp. 371-1-17, 2023.
https://doi.org/10.3390/socsci12070371 - SeyedAhmad SeyedAlinaghi, et al., “Social stigma
during COVID-19: A systematic review”, SAGE Open
Med., vol. 11, p. 20503121231208273, 2023.
https://doi.org/10.1177/20503121231208273 - D. Buysse, C. Reynolds 3rd, T. Monk, S. Berman, D.
Kupfer, “The Pittsburgh Sleep Quality Index: a new
instrument for psychiatric practice and research”,
Psychiatry Res., vol. 28, no. 2, pp. 193-213, 1989.
https://doi.org/10.1016/0165-1781(89)90047-4 - G.A. Palmer, A. Dahlstrom, A. Kingwell, J. Van Sickle,
J. (2017). Beck Anxiety Inventory. In: Zeigler-Hill, V.,
Shackelford, T. (eds) Encyclopedia of Personality and
Individual Differences. Springer, Cham.
https://doi.org/10.1007/978-3-319-28099-8_5-1 - Z.E. García-Batista, K. Guerra-Peña, A. Cano-Vindel,
S.X. Herrera-Martínez, L.A. Medrano “Validity and
reliability of the Beck Depression Inventory (BDI-II)
in general and hospital population of Dominican
Republic”, PLOS One, vol. 13, no. 6, pp. e0199750-1-
12, 2018.
https://doi.org/10.1371/journal.pone.0199750 - G. Mertens, S. Duijndam, T. Smeets, P. Lodder, “The
latent and item structure of COVID-19 fear: A
comparison of four COVID-19 fear questionnaires
using SEM and network analyses”, Journal of Anxiety
Disorders, vol. 81, pp. 102415-1-9, 2021.
https://doi.org/10.1016/j.janxdis.2021.102415 - N.B. Elsharkawy, E.M. Abdelaziz “Levels of fear and
uncertainty regarding the spread of coronavirus
disease (COVID-19) among university students”,
Perspect. Psychiatr. Care, vol. 57, pp. 1356–1364,
2020.
https://doi.org/10.1111/ppc.12698 - A. Metin, E.S. Erbiçer, S. Şen, A. Çetinkaya, “Gender
and COVID-19 related fear and anxiety: A meta-
analysis”, J. Affect Disord., vol. 310, pp. 384-395,
2022.
https://doi.org/10.1016/j.jad.2022.05.036 - Y. Zolotov, A. Reznik, S. Bender, et al., “COVID-19
Fear, Mental Health, and Substance Use Among
Israeli University Students”, Int. J. Ment. Health
Addiction, vol. 20, pp. 230–236, 2022.
https://doi.org/10.1007/s11469-020-00351-8 - F. Bakioğlu, O. Korkmaz, H. Ercan, “Fear of COVID-
19 and Positivity: Mediating Role of Intolerance of
Uncertainty, Depression, Anxiety, and Stress”, Int. J.
Ment. Health Addiction, vol. 19, no. 6, pp. 2369-2382,
2021.
https://doi.org/10.1007/s11469-020-00331-y
FATTY ACID ENZYME ACTIVITIES AND RISK OF DIABETES MELLITUS
Šaćira Mandal
Received: 21 OCT 2024, Received revised: 28 MARCH 2025, Accepted: 22 APRIL 2025, Published online: 16 MAY 2025
Abstract | References | Cite This | Full Text (PDF)
- J.P.G. Poisson, S.C. Cunnane, “Long-chain fatty acid
metabolism in fasting and diabetes: relation between
altered desaturase activity and fatty acid composition”,
J. Nutr. Biochem., vol. 2, no. 2, pp. 60-70, 1991.
https://doi.org/10.1016/0955-2863(91)9x0030-9 - J. Kröger, M.B. Schulze, “Recent insights into the
relation of Δ5 desaturase and Δ6 desaturase activity to
the development of type 2 diabetes”, Current Opinion
in Lipidology, vol. 23, no. 1, pp. 4-10, 2012.
https://doi.org/10.1097/mol.0b013e32834d2dc5 - S. Yuan, S.C. Larsson, “Association of genetic variants
related to plasma fatty acids with type 2 diabetes
mellitus and glycaemic traits: a Mendelian
randomisation study”, Diabetologia, vol. 63, no. 1, pp.
116-123, 2020.
https://doi.org/10.1007/s00125-019-05019-0 - N. Li, Y. Qiu, Y. Wu, M. Zhang, Z. Lai, Q. Wang, Y. Du,
L. Guo, S. Liu, Z. Li, “Association of serum total fatty
acids with type 2 diabetes”, Clinica Chimica Acta, vol.
500, pp. 59-68, 2020.
https://doi.org/10.1016/j.cca.2019.09.018 - S.S. Shetty, N.S. Kumari, “Fatty acid desaturase 2
(FADS 2) rs174575 (C/G) polymorphism, circulating lipid levels and susceptibility to type-2 diabetes
mellitus”, Sci. Rep., vol. 11, no. 1, pp. 13151 -1-8, 2021.
https://doi.org/10.1038/s41598-021-92572-7 - W.T. Friedewald, R.I. Levy, D.S. Fredrickson,
“Estimation of the concentration of low-density
lipoprotein cholesterol in plasma, without use of the
preparative ultracentrifuge”, Clin Chem., vol. 18, no. 6,
pp. 499-502, 1972.
https://doi.org/10.1093/clinchem/18.6.499 - International Diabetes Federation. Diabetes Atlas — 10th Edition. Diabetes Atlas, 2021. https://diabetesatlas.org/atlas/tenth-edition
- American Diabetes Association. Standards of medical
care in diabetes—2021, Diabetes Care, 1; vol. 44
(Suppl.1), pp. S15–S33, 2021.
https://doi.org/10.2337/dc21-S002 - E.G. Bligh, W. J. Dyer, “A rapid method of total lipid
extraction and purification”, Canadian Journal of
Biochemistry and Physiology, vol. 37, no. 8, pp. 911-
917, 1959.
https://cdnsciencepub.com/doi/pdf/10.1139/o59-099 - G. Lepage, C.C. Roy, “Specific methylation of plasma
nonesterified fatty acids in a one-step reaction”, J.
Lipid Res., vol. 29, no. 2, pp. 227-235, 1988.
https://doi.org/10.1016/S0022-2275(20)38553-9 - V. Lamantia, S. Bissonnette, V. Provost, M. Devaux, Y.
Cyr, C. Daneault, C.D. Rosiers, M. Faraj, “The
association of polyunsaturated fatty Acid δ-5-
Desaturase Activity with Risk Factors for Type 2
Diabetes Is Dependent on Plasma ApoB-Lipoproteins
in Overweight and Obese Adults”, J. Nutr., vol. 149,
no. 1, pp. 57-67, 2019.
https://doi.org/10.1093/jn/nxy238 - I.S.A. Sobczak, A.C. Blindauer, J.A. Stewart, “Changes
in plasma free fatty acids associated with type-2
diabetes”, Nutrients, vol. 11, no. 9, pp. 1-42, 2019.
https://doi.org/10.3390/nu11092022 - M.A. Lankinen, A. Stančáková, M. Uusitupa, J. Ågren,
J. Pihlajamäki, J. Kuusisto, U. Schwab, M. Laakso,
“Plasma fatty acids as predictors of glycaemia and type
2 diabetes”, Diabetologia, vol. 58, no. 11, pp. 2533-
2544, 2015.
https://doi.org/10.1007/s00125-015-3730-5 - A.M. Hodge, D.R. English, K. O’Dea, A.J. Sinclair, M.
Makrides, R.A. Gibson, G.G. Giles, “Plasma
phospholipid and dietary fatty acids as predictors of
type 2 diabetes: interpreting the role of linoleic acid”,
Am J. Clin. Nutr., vol. 86, pp. 189–97, 2007.
https://pubmed.ncbi.nlm.nih.gov/17616780/ - G. Sartore, A. Lapolla, R. Reitano, S. Zambon, G.
Romanato, R. Marin, C. Cosma, E. Manzato, D. Fedele,
“Desaturase activities and metabolic control in type 2
diabetes,” Clinical Trial Prostaglandins Leukot Essent
Fatty Acids. vol. 79, no. 1, pp. 55-8, 2008.
https://doi.org/10.1016/j.plefa.2008.07.001 - S. Mandal, “New molecular biomarkers in precise
diagnosis and therapy of type 2 diabetes”, Health
Technol., vol. 10, pp. 601–608, 2020.
https://doi.org/10.1007/s12553-019-00385-6 - E. Fragopoulou, Detopoulou P, Alepoudea E, Nomikos
T, Kalogeropoulos N, Antonopoulou S, “Associations
between red blood cells fatty acids, desaturases indices
and metabolism of platelet activating factor in healthy
volunteers”, Prostaglandins Leukot Essent Fatty
Acids, vol.164, 102234, 2021.
https://pubmed.ncbi.nlm.nih.gov/33373961/ - E. Warensjö, M. Rosell, M.L. Hellenius, B. Vessby, U.
De Faire, U. Risérus, “Associations between estimated
fatty acid desaturase activities in serum lipids and
adipose tissue in humans: links to obesity and insulin
resistance”, Lipids Health Dis., vol. 8, no. 37, pp. 1-6,
2009.
https://doi.org/10.1186/1476-511x-8-37 - Y. Wang, D. Botolin, J. Xu, B. Christian, E. Mitchell, B.
Jayaprakasam, M.G. Nair, J.M. Peters, J.V. Busik, L.K.
Olson, D.B. Jump, “Regulation of hepatic fatty acid
elongase and desaturase expression in diabetes and
obesity”, J Lipid Res., vol. 47, no. 9, pp. 2028-2041,
2006.
https://doi.org/10.1194/jlr.m600177-jlr200 - I. Šarac, J. Debeljak-Martačić, M. Takić, V. Stevanović,
J. Milešević, M. Zeković, T. Popović, J. Jovanović, N.K.
Vidović, “Associations of fatty acids composition and
estimated desaturase activities in erythrocyte
phospholipids with biochemical and clinical indicators
of cardiometabolic risk in non-diabetic Serbian
women: the role of level of adiposity”, Front. Nutr.,
vol. 10, 1065578, 2023.
https://doi.org/10.3389/fnut.2023.1065578 - T. Matsuzaka, “Role of fatty acid elongase Elovl6 in the
regulation of energy metabolism and
pathophysiological significance in diabetes”, Diabetol
Int., vol. 12, no. 1, pp. 68-73, 2021.
https://doi.org/10.1007/s13340-020-00481-3 - D.S. Wismayer, M.C. Laurenti, Y. Song, A.M. Egan,
A.A. Welch, K.R. Bailey, C. Cobelli, C.D. Man, M.D.
Jensen, A. Vella, “Effects of acute changes in fasting
glucose and free fatty acid concentrations on indices of
β-cell function and glucose metabolism in subjects
without diabetes”, Am J Physiol Endocrinol Metab,
vol. 325, pp. E119–E131, 2023.
https://doi.org/10.1152/ajpendo.00043.2023 - L-P. Jiang, H-Z. Sun, “Long-chain saturated fatty acids
and its interaction with insulin resistance and the risk
of nonalcoholic fatty liver disease in type 2 diabetes in
Chinese”, Front. Endocrinol., vol. 13, 1051807, 2022.
https://doi.org/10.3389/fendo.2022.1051807 - W. Qureshi, I.D. Santaren, A.J. Hanley, S.M. Watkins,
C. Lorenzo, L.E. Wagenknecht, “Risk of diabetes
associated with fatty acids in the de novo lipogenesis
pathway is independent of insulin sensitivity and
response: the Insulin Resistance Atherosclerosis Study
(IRAS)”, BMJ Open Diabetes Res Care, vol. 7, no. 1,
e000691-1-8, 2019.
https://doi.org/10.1136/bmjdrc-2019-000691 - M.A. Montanaro, M.S. González, A.M. Bernasconi,
R.R. Brenner, “Role of liver X receptor, insulin and
peroxisome proliferator activated receptor alpha on in
vivo desaturase modulation of unsaturated fatty acid
biosynthesis”, Lipids., vol. 42, no. 3, pp. 197-210, 2007.
https://doi.org/10.1007/s11745-006-3006-4 - K.M. Brown, S. Sharma, E. Baker, W. Hawkins, M. van
der Merwe, M.J. Puppa, “Delta-6-desaturase (FADS2)
inhibition and omega-3 fatty acids in skeletal muscle
protein turnover”, Biochem. Biophys. Rep., vol. 18:
100622-1-7, 2019.
https://doi.org/10.1016/j.bbrep.2019.100622 - S. Klein, A. Gastaldelli, H. Yki-Järvinen, P.E. Scherer,
“Why does obesity cause diabetes?”, Cell Metab., vol.
34, no. 1, pp. 11-20, 2022.
https://doi.org/10.1016/j.cmet.2021.12.012 - X. Zhu, L. Chen, J. Lin, M. Ba, J. Liao, P. Zhang, C.
Zhao, “Association between fatty acids and the risk of
impaired glucose tolerance and type 2 diabetes
mellitus in American adults: NHANES 2005-2016”,
Nutr Diabetes, vol. 13, no. 8, 2023.
https://doi.org/10.1038/s41387-023-00236-4 - L. Huang, J.S. Lin, I.M. Aris, G. Yang, W.Q. Chen, L.J.
Li, “Circulating saturated fatty acids and incident type
2 diabetes: a systematic review and meta-analysis”,
Nutrients, vol. 11, no. 5, 998, 2019.
https://doi.org/10.3390/nu11050998 - N. Stefan, A. Peter, A. Cegan, H. Staiger, J. Machann,
F. Schick, C.D. Claussen, A. Fritsche, H.U. Häring, E.
Schleicher, “Low hepatic stearoyl-CoA desaturase 1
activity is associated with fatty liver and insulin resistance in obese humans”, Diabetologia, vol. 51, no.
4, pp. 648-56, 2008.
https://doi.org/10.1007/s00125-008-0938-7 - K. Bódis, S. Kahl, M.C. Simon, Z. Zhou, H. Sell, B.
Knebel, A. Tura, K. Strassburger, V. Burkart, K.
Müssig, D. Markgraf, H. Al-Hasani, J. Szendroedi, M.
Roden, “GDS Study Group, Reduced expression of
stearoyl-CoA desaturase-1, but not free fatty acid
receptor 2 or 4 in subcutaneous adipose tissue of
patients with newly diagnosed type 2 diabetes
mellitus”, Nutr. Diabetes., vol. 8, pp. 49-1-9, 2018.
https://doi.org/10.1038/s41387-018-0054-9 - D. Gallagher, M. Visser, D. Sepúlveda, R.N. Pierson, T.
Harris, S.B. Heymsfield, “How useful is body mass
index for comparison of body fatness across age, sex,
and ethnic groups?”, Am J Epidemiol., vol. 143, no. 3,
pp. 228-39, 1996.
https://doi.org/10.1093/oxfordjournals.aje.a008733 - T. Takato, K.Iwata, C. Murakami, Y. Wada, F. Sakane,
“Chronic administration of myristic acid improves
hyperglycaemia in the Nagoya-Shibata-Yasuda mouse
model of congenital type 2 diabetes”, Diabetologia,
vol. 60, no. 10, pp. 2076-2083, 2017.
https://doi.org/10.1007/s00125-017-4366-4
CALCULATIONS OF MAGNETIC FLUX DENSITY IN THE VICINITY OF THE 10/0.4 KV SUBSTATIONS WITH 0.4 KV BUSBARS
Maja Grbić, Aldo Canova
Received: 26 NOV 2024, Received revised: 12 MAY 2025, Accepted: 23 MAY 2025, Published online: 20 JUNE 2025
Abstract | References | Cite This | Full Text (PDF)
- International Commission on Non‐Ionizing Radiation Protection (ICNIRP), “ICNIRP guidelines for limiting exposure to time‐varying electric, magnetic, and electromagnetic fields (up to 300 GHz)”, Health Phys., vol. 74, no. 4, pp. 494–522, 1998.
- 1999/519/EC, “Council recommendation of 12 July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz)”, OJ L, 1999.
- 3. International Commission on Non‐Ionizing Radiation Protection (ICNIRP), “ICNIRP guidelines for limiting exposure to time‐varying electric and magnetic fields (1 Hz – 100 kHz)”, Health Phys., vol. 99, no. 6, pp. 818–836, 2010.
- Влада Републике Србије. (15. мај 2009.). Закон о заштити од нејонизујућих зрачења, Службени гласник Републике Србије бр. 36/09. (Government of the Republic of Serbia. (May 15, 2009). Law on Protection from Non-Ionizing Radiation, Official Gazette of Republic of Serbia No. 36/09).
- Влада Републике Србије. (16. децембар 2009.). Правилник о границама излагања нејонизујућим зрачењима, Службени гласник Републике Србије бр. 104/09. (Government of the Republic of Serbia. (Dec. 16, 2009). Rulebook on Limits of Exposure to Non- Ionizing Radiation, Official Gazette of Republic of Serbia No. 104/09).
- Влада Републике Србије. (16. децембар 2009.). Правилник о изворима нејонизујућих зрачења од посебног интереса, врстама извора, начину и периоду њиховог испитивања, Службени гласник Републике Србије бр. 104/09 (Government of the Republic of Serbia. (Dec. 16, 2009). Rulebook on Sources of Non-Ionizing Radiation of Special Interest, Types of Sources, Methods and Frequentness of Their Testing, Official Gazette of Republic of Serbia No. 104/09).
- Governo della Repubblica Italiana. (22 febbraio 2001). “Legge quadro sulla protezione dalle esposizioni a campi elettrici, magnetici ed elettromagnetici”, Legge n° 36 – Legge che rimanda l’applicazione ai decreti applicativi: DPCM 8 luglio 2003. (Government of the Republic of Italy. (Feb. 22, 2001). “Framework law on protection from exposure to electric, magnetic and electromagnetic fields”, Law No. 36 – Law that refers the application to the implementing decrees: Prime Ministerial Decree of 8 July 2003.).
- Governo della Repubblica Italiana. (8 luglio 2003). DPCM 8 luglio 2003, “Fissazione dei limiti di esposizione, dei valori di attenzione e degli obbiettivi di qualità per la protezione della popolazione dalle esposizioni ai campi elettrici e magnetici alla frequenza di rete (50 Hz) generati da elettrodotti. (Government of the Republic of Italy. (July 8, 2003). Prime Ministerial Decree of 8 July 2003, “Establishing exposure limits, attention values and quality objectives for the protection of the population from exposure to electric and magnetic fields at the network frequency (50 Hz) generated by power lines.).
- C. Brabant et al., “Exposure to magnetic fields and
childhood leukemia: A systematic review and
metaanalysis of case-control and cohort studies”, Rev.
Environ. Health, vol. 38, no. 2, pp. 229–253, 2022.
https:// doi.org/10.1515/reveh-2021-0112. - C. Malagoli et al., “Residential exposure to magnetic
fields from high-voltage power lines and risk of
childhood leukemia”, Environ. Res., vol. 232. article
116320, 2023.
https://doi.org/10.1016/j.envres. 2023.116320. - Mitigation techniques of power frequency magnetic fields originated from electric power systems, Working Group C4.204, CIGRE, Tech. Rep., 2009.
- M. Grbić et al., “Mitigation of Low Frequency
Magnetic Field Emitted by 10/0.4 kV Substation in the
School”, Int. J. Numer. Model.: Electron. Netw. Devices
Fields, vol. 38, iss.2, 2025.
http://doi.org/10.1002/jnm.70015. - J.C. Bravo-Rodríguez, J.C. Del-Pino-López, P. Cruz- Romero, “A survey on optimization techniques applied to magnetic field mitigation in power systems”, Energies, vol. 12, no. 7, article 1332, 2019.
- D. Bavastro et al., “Magnetic field mitigation at
power frequency: design principles and case study”, IEEE Trans. Ind. Appl., vol. 51, no. 3, pp. 2009–2016,
2015.
http://doi.org/10.1109/TIA.2014.2369813. - J. C. del-Pino-López, L. Giaccone, A. Canova, P.
Cruz Romero, “Design of active loops for magnetic field
mitigation in MV/LV substation surroundings, Electr.
Power Syst. Res., vol. 119, pp 337–344, 2015,
http://doi.org/10.1016/j.epsr.2014.10.019. - M. Grbić, A. Pavlović, “Practical Application of Technique for Reducing Levels of Magnetic Field Emitted by 10/0.4 kV Substationˮ, The 23 rd International Conference and Exhibition on Electricity Distribution – CIRED, Lyon, France, 2015, Paper No. 1541.
- M. Grbić, A. Canova, L. Giaccone, “Magnetic Field in an Apartment Located above 10/0.4 kV Substation: Levels and Mitigation Techniquesˮ, The 24 th International Conference and Exhibition on Electricity Distribution – CIRED, Glasgow, Scotland, 2017, Paper No. 1230, http://doi.org/10.1049/oap-cired.2017.1230.
- М. Грбић, А. Павловић, „Анализа нивоа магнетске индукције у зонама повећане осетљивости изнад трансформаторских станица напонског нивоа 10/0,4 kVˮ, XIV саветовање о електродистрибутивним мрежама Србије са регионалним учешћем, Koпаоник, Република Србија, 2024. године, Зборник радова, R-1.17. (M. Grbić, A. Pavlović, “Analysis of Magnetic Flux Density Levels in the Increased Sensitivity Areas Located above the 10/0.4 kV Substationsˮ, The 14 th Conference on Electricity Distribution Networks of Serbia with Regional Participation, Kopaonik, the Republic of Serbia, 2024, Proceedings, R-1.17.)
- EN 50413:2019, Basic standard on measurement and calculation procedures for human exposure to electric, magnetic and electromagnetic fields (0 Hz – 300 GHz).
- EN 61786:2014, Measurement of DC magnetic, AC magnetic and AC electric fields from 1 Hz to 100 kHz with regard to exposure of human beings – Part 1: Requirements for measuring instruments.
- IEC 61786:2014, Measurement of DC magnetic, AC magnetic and AC electric fields from 1 Hz to 100 kHz with regard to exposure of human beings – Part 2: Basic standard for measurements.
- EN 62110:2009, Electric and magnetic field levels generated by AC power systems – Measurement procedures with regard to public exposure.
- MAGIC – Magnetic induction calculation software,
https://beshielding.com/en/shielding/magic/.
CALCULATIONS OF ELECTRIC AND MAGNETIC FIELDS AT THE LOCATION OF THE INTERSECTION OF TWO OVERHEAD POWER LINES
Maja Grbić, Stefan Obradović, Aleksandar Pavlović
Received: 26 NOV 2024, Received revised: 13 MAY 2025, Accepted: 25 MAY 2025, Published online: 20 JUNE 2025
Abstract | References | Cite This | Full Text (PDF)
- Technical guide for measurement of low frequency electric and magnetic fields near overhead power lines, CIGRE Working Group C4.203, 2009.
- Mitigation techniques of power frequency magnetic fields originated from electric power systems, CIGRE Working Group C4.204, 2009.
- Characterisation of ELF magnetic fields, CIGRE Working Group C4.205, 2007.
- Responsible management of electric and magnetic fields, CIGRE Working Group C3.19, 2020.
- International Commission on Non‐Ionizing Radiation Protection (ICNIRP), “ICNIRP guidelines for limiting exposure to time‐varying electric, magnetic, and electromagnetic fields (up to 300 GHz)”, Health Phys., vol. 74, no. 4, pp. 494–522, 1998.
- 6. European Union. (Jul. 12, 1999). 1999/519/EC: Council
recommendation of 12 July 1999 on the limitation of
exposure of the general public to electromagnetic fields
(0 Hz to 300 GHz), OJ L.
Retrieved from:
https://eur-lex.europa.eu/legal- content/EN/TXT/?uri=CELEX:31999H0519 Retrieved on: Apr. 24, 2025. - International Commission on Non‐Ionizing Radiation Protection (ICNIRP), “ICNIRP guidelines for limiting exposure to time‐varying electric and magnetic fields (1 Hz – 100 kHz)”, Health Phys., vol. 99, no. 6, pp. 818–836, 2010.
- Влада Републике Србије. (15. мај 2009.). Закон о
заштити од нејонизујућих зрачења, Службени
гласник Републике Србије бр. 36/09. (Government of
the Republic of Serbia. (May 15, 2009). Law on Protection from Non-Ionizing Radiation, Official
Gazette of Republic of Serbia No. 36/09)
Retrieved from:
https://www.ekologija.gov.rs/dokumenta/zastita-od- nejonizujucih-zracenja/zakoni Retrieved on: Apr. 24, 2025 - Влада Републике Србије. (16. децембар 2009.).
Правилник о границама излагања нејонизујућим
зрачењима, Службени гласник Републике Србије бр.
104/09. (Government of the Republic of Serbia. (Dec.
16, 2009). Rulebook on Limits of Exposure to Non-
Ionizing Radiation, Official Gazette of Republic of
Serbia No. 104/09)
Retrieved from:
https://www.ekologija.gov.rs/dokumenta/zastita-od- nejonizujucih-zracenja/pravilnici
Retrieved on: Apr. 24, 2025 - Влада Републике Србије. (16. децембар 2009.).
Правилник о изворима нејонизујућих зрачења од
посебног интереса, врстама извора, начину и
периоду њиховог испитивања, Службени гласник
Републике Србије бр. 104/09 (Government of the
Republic of Serbia. (Dec. 16, 2009). Rulebook on
Sources of Non-Ionizing Radiation of Special Interest,
Types of Sources, Methods and Frequentness of Their
Testing, Official Gazette of Republic of Serbia No.
104/09)
Retrieved from:
https://www.ekologija.gov.rs/dokumenta/zastita-od- nejonizujucih-zracenja/pravilnici
Retrieved on: Apr. 24, 2025 - Basic standard on measurement and calculation procedures for human exposure to electric, magnetic and electromagnetic fields (0 Hz – 300 GHz), EN 50413, 2019.
- Measurement of DC magnetic, AC magnetic and AC electric fields from 1 Hz to 100 kHz with regard to exposure of human beings – Part 1: Requirements for measuring instruments, IEC 61786, 2013.
- Measurement of DC magnetic, AC magnetic and AC electric fields from 1 Hz to 100 kHz with regard to exposure of human beings – Part 2: Basic standard for measurements, IEC 61786, 2014.
- Electric and magnetic field levels generated by AC power systems – Measurement procedures with regard to public exposure, EN 62110, 2009.
- Electric Power Research Institute (EPRI), “Electric and magnetic fields”, in EPRI AC Transmission Line Reference Book – 200 kV and Above, Third Edition, Palo Alto, CA, USA, EPRI, 2005, pp. 7.1–7.118.
- Power lines: Demonstrating compliance with EMF
public exposure guidelines: A voluntary code of
practice. Government of the UK, Department of Energy
& Climate Change, London, UK, 2012.
Retrieved from:
https://assets.publishing.service.gov.uk/media/5a7967 99ed915d07d35b5397/1256-code-practice-emf-public- exp-guidelines.pdf
Retrieved on: Apr. 24, 2025 - M. Grbić, A. Pavlović, “Measurements and calculations of non-ionizing radiation levels in the vicinity of 35 kV overhead power linesˮ, The 23 rd International Conference and Exhibition on Electricity Distribution – CIRED Conf. Proc, Lyon, France, 2015.
- M. Grbić, A. Pavlović: “Determining the zone of
influence of transmission overhead power lines from
the aspect of non-ionizing radiationˮ, The 6 th
International Conference on Radiation and
Applications in Various Fields of Research, RAD Conf.
Proc, vol. 3, Ohrid, Macedonia, 2018, pp. 52–57.
https://doi.org/10.21175/RadProc.2018.11 - M. Grbić, J. Mikulović, D. Salamon, “Influence of
measurement uncertainty of overhead power line
conductor heights on electric and magnetic field calculation resultsˮ, Int. J. Electr. Power Energy Syst.,
vol. 98, pp. 167–175, 2018.
https://doi.org/10.1016/j.ijepes.2017.11.038 - M. Grbić, D. Salamon, J. Mikulović, “Analysis of
influence of measuring voltage transformer ratio error
on single-circuit overhead power line electric field
calculation results, Electr. Power Syst. Res., vol. 166,
pp. 232–240, 2019.
https://doi.org/10.1016/j.epsr.2018.10.001 - G. Lucca, “Magnetic field produced by power lines
with complex geometry” Eur. T. Electr. Power., vol. 21,
no. 1, pp. 52-58, 2011.
https://doi.org/10.1002/etep.411 - A. Z. El Dein, “Calculation of the electric field
around the tower of the overhead transmission lines”
IEEE T. Power. Deliver., vol. 29, no. 2, pp. 899-907,
2014.
https://doi.org/10.1109/TPWRD.2013.2273500 - A. Z. El Dein, “Parameters affecting the charge
distribution along overhead transmission lines’
conductors and their resulting electric field”, Electric
Power Syst. Res., vol. 108, pp. 198-210, 2014.
https://doi.org/10.1016/j.epsr.2013.11.011 - E. Turajlić, A. Mujezinović, A. Alihodžić, “A novel
method based on PSO algorithm and ANN for magnetic
flux density estimation near overhead transmission
lines”, J. Electr. Eng., vol. 74, pp. 399-410, 2024.
https://doi.org/10.2478/jee-2024-0048 - A. Alihodžić, A. Mujezinović, E. Turajlić, “Artificial
neural network-based method for overhead lines
magnetic flux density estimation”, J. Electr. Eng., vol.
75, pp. 181-191, 2024.
https://doi.org/10.2478/jee-2024-0022 - E. Turajlić, A. Alihodžić, A. Mujezinović, “Artificial
neural network models for estimation of electric field
intensity and magnetic flux density in the proximity of
overhead transmission line”, Radiat. Prot. Dosimetry,
vol. 199, pp. 107-115, 2023.
https://doi.org/ 10.1093/rpd/ncac229 - XGSLab User’s Guide, Release 9.4.1 – 03/20, SINT Ingegneria Srl, 2020.
- XGSLab Tutorial XGSA_FD, Release 9.4.1 – 03/20, SINT Ingegneria Srl, 2020.
- ЈП „Електромрежа Србије”, Дозвољене струје фазних проводника на далеководима ЈП ЕМС-а, Техничко упутство ТУ-ДВ-04, верзија 2, ЈП ЕМС, Београд, Србија, 2011. (Public Enterprise Elektromreža Srbije, Permitted currents of phase conductors of power lines owned by the Public Enterprise Elektromreža Srbije, Technical Guidance TU-DV-04, ver. 2, PE EMS, Belgrade, Serbia, 2011.)
A COMPREHENSIVE BEAMLINE FOR PROTON AND ION BEAMS ACCELERATED VIA LASER- PLASMA INTERACTION: THE APPROACH IMPLEMENTED AT THE I-LUCE FACILITY
G. Petringa, A. D. Pappalardo, R. Catalano, C. Altana, A. Amato, S. Arjmand, D. Bandieramonte, D. Bonanno, G. Cuttone, C. Manna, G. Messina, A. Miraglia, M. Musumeci, D. Oliva, S. Passarello, G. Sapienza, J. Suarez-Vargas, M. Tringale, S. Tudisco, F. Vinciguerra, F. Abubaker, F. Farokhi, S. Fattori, M. Guarrera, A. Hassan, A. Kurmanova, A. Sciuto1 and G.A.P. Cirrone
Received: 8 OCT 2024, Received revised: 16 JAN 2025, Accepted: 23 JAN 2025, Published online: 31 JULY 2025
Abstract | References | Cite This | Full Text (PDF)
- G. Milluzzo, G. Petringa, R. Catalano, G.A.P.
Cirrone, “Handling and dosimetry of laser-driven
ion beams for applications”, Eur. Phys. J. Plus,
vol. 136, no. 1170, 2021.
https://doi.org/10.1140/epjp/s13360-021-02134-z - A. Macchi, M. Borghesi, M. Passoni, “Ion
acceleration by superintense laser-plasma
interaction“, Rev. Mod. Phys., vol. 85, no.2, pp. 751-
793, 2013.
https://doi.org/10.1103/RevModPhys.85.751 - T.M. Jeong, “Measurement of the electron density
produced by the prepulse in an experiment of high
energy proton beam generation”, J. Korean Phys.
Soc., vol. 50, no. 1, pp. 34-39, 2007.
https://doi.org/10.3938/jkps.50.34 - G.A.P. Cirrone et al, “ELIMED-ELIMAIA: The
First Open User Irradiation Beamline for Laser-
Plasma-Accelerated Ion Beams”, Front. Phys., vol.
8, p. 564907, 2020.
https://doi.org/10.3389/fphy.2020.564907 - D. Margarone et al. “ELIMAIA: a laser-driven ion
accelerator for multidisciplinary applications”,
Quant Beam Sci., vol. 2, no. 2, 2018.
https://doi.org/10.3390/qubs2020008 - C. Richter et al., “Laser-Based Particle
Acceleration for Future Ion Therapy: Current
Status of the Joint Project OnCOOPtics with
Special Focus on Beam Delivery and Dosimetry”,
Med. Phys., vol. 37, no. 6Part23, pp. 3292–3292,
2010.
https://doi.org/10.1118/1.3468857 - BELLA: The Berkeley Lab Laser Accelerator. http://www.lbl.gov/community/bella/
- M. Maggiore et al., “Innovative handling and transport solutions for laser-driven ion beams”, AIP Conf. Proc., vol. 1546, pp. 34-43, 2013.
- A. Tramontana et al., “The Energy Selection
System for the laser-accelerated proton beams at
ELI-Beamlines”, J. Instrum., vol. 9, no. C05065,
2014.
https://doi.org/10.1088/1748-0221/9/05/C05065 - V. Scuderi et al, “Development of an energy
selector system for laser-driven proton beam
applications”, Nucl. Instr. Meth. A, vol. 740, pp.
87-93, 2014.
https://doi.org/10.1016/j.nima.2013.10.037 - G. Milluzzo et al., “A new energy spectrum
reconstruction method for time-of-flight
diagnostics of high-energy laser-driven protons”,
Rev. Sci. Instrum., vol. 90, 083303, 2019.
https://doi.org/10.1063/1.5082746 - G. Cuttone et al. “First Dosimetry Intercomparison Results for the CATANA project”, Phys Med., vol. 15, pp. 121–130, 1999.
- R. Catalano et al., “Transversal dose profile
reconstruction for clinical proton beams: A
detectors inter-comparison“, Phys Med., vol. 70,
pp. 133–138, 2020.
https://doi.org/10.1016/j.ejmp.2020.01.006 - G. Petringa et al., “PRAGUE (Proton Range Measurement Using Silicon Carbide): a detector to measure online the proton beam range with laser- driven proton beams”, JACoW IPAC2023 THPA078, 2023. https://doi.org/10.18429/JACoW-IPAC2023- THPA078
IMPLEMENTING PLASMA-DISCHARGE CAPILLARY DESIGN FOR VERY HIGH ENERGY ELECTRON (VHEE) APPLICATIONS AT I-LUCE FACILITY
S. Arjmand, A. Amato, R. Catalano, G. Cuttone, C. Manna, D. Oliva, A.D. Pappalardo, G. Petringa, J. Suarez, F. Vinciguerra, G.A.P. Cirrone
Received: 31 OCT 2024, Received revised: 29 JAN 2025, Accepted: 14 FEB 2025, Published online: 31 JULY 2025
Abstract | References | Cite This | Full Text (PDF)
- R. Bingham, R. Trines, “Introduction to plasma accelerators: the basics”, Proceeding of the 2014 CAS-CERN accelerator school: plasma wake acceleration, vol. 1, pp. 67-77, 2016.
https://doi.org/10.5170/CERN-2016-001.67 - A. Lagzda, “VHEE Radiotherapy Studies at CLARA and CLEAR Facilities”, PhD thesis, University of Manchester, Manchester, UK, 2019.
https://research.manchester.ac.uk/en/studentTheses/vhee-radiotherapy-studies-at-clara-and-clear-facilities - P. Muggli et al., “White paper: AWAKE, plasma wakefield acceleration of electron bunches for near and long-term particle physics application”, arXiv:2203.09198v1, 2022.
https://doi.org/10.48550/arXiv.2203.09198 - J. Fischer et al., “Very high-energy electrons as radio therapy opportunity”, Eur. Phys. J. Plus, vol. 139, no. 8, 2024.
https://doi.org/10.1140/epjp/s13360-024-05455-x - C. Joshi et al., “Plasma-based accelerators: then and now”, Plasma Phys. Control. Fusion, vol. 61, no. 10, 104001, 2019.
https://doi.org/10.1088/1361-6587/ab396a - J. Faure et al., “A laser-plasma accelerator producing monoenergetic electron beams”, Nature, vol. 431, pp. 541-544, 2004.
https://doi.org/10.1038/nature02963 - K. Svendsen et al., “A focused very high energy electron beam for fractionated stereotactic radiotherapy”, Sci. Rep, vol. 11, no. 5844, 2021.
https://doi.org/10.1038/s41598-021-85451-8 - S. Arjmand et al., “Plasma capillary for high energy electrons”, RAD Conf. Proc., vol. 8, pp. 96-102, 2024.
- K.N. Kim et al., “Characteristics of a very high energy electron beam in a laser wakefield accelerator for cancer therapy”, J. Korean Phys. Soc., vol. 77, pp. 399-403, 2020.
https://doi.org/10.3938/jkps.77.399 - E. Esarey, P. Sprangle, J. Krall, and A. Ting, “Overview of plasma-based accelerator concepts”, IEEE Trans. Plasma Sci., vol. 24, no. 2, pp. 252-288, 1996.
https://doi.org/10.1109/27.509991 - W.P. Leemans et al., “The Berkeley lab laser accelerator (BELLA): A 10 GeV laser plasma accelerator”, AIP Conf. Proc, vol. 1299, pp. 3-11, 2010.
- K. Nakamura et al., “Analysis of capillary guided laser plasma accelerator experiments at LBNL”, AIP Conf. Proc., vol. 1086, pp. 147-152, 2009.
https://doi.org/10.1063/1.3080896 - H. Lu et al., “Laser wakefield acceleration of electron beams beyond 1 GeV from an ablative capillary discharge waveguide”, Appl. Phys. Lett., vol. 99, 091502, 2011.
https://doi.org/10.1063/1.3626042 - W.P. Leemans et al., “Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime”, Phys. Rev. Lett., vol. 113, no. 24, pp. 245002-1-5, 2014.
https://doi.org/10.1103/PhysRevLett.113.245002 - G.A.P. Cirrone et al., “Ion acceleration by laser-matter interaction: status and perspective with the upcoming I-LUCE facility at INFN-LNS”, Proc. IPAC'23, pp. 4386-4388, 2023.
https://doi.org/10.18429/JACoW-IPAC2023-THPA179 - C. McGuffey et al., “Ionization Induced Trapping in a Laser Wakefield Accelerator”, Phys. Rev. Lett, vol. 104, no. 2, pp. 025004-1-4, 2010.
https://doi.org/10.1103/PhysRevLett.104.025004 - C.G.R. Geddes et al., “Plasma-density-gradient injection of low absolute-momentum-spread electron bunches”, Phys. Rev. Lett, vol. 100, no. 21, pp. 215004-1-4, 2008.
https://doi.org/10.1103/PhysRevLett.100.215004 - K. Schmid et al., “Density-transition based electron injector for laser driven wakefield accelerators”, Phys. Rev. ST Accel. Beams, vol. 13, no. 9, pp. 091301-1-5, 2010.
https://doi.org/10.1103/PhysRevSTAB.13.091301 - C. Thaury et al., “Shock assisted ionization injection in laser-plasma accelerators”, Sci. Rep., vol. 5, pp. 16310-1-7, 2015.
https://doi.org/10.1038/srep16310 - J. Faure et al., “Experiments and simulations of the colliding pulse injection of electrons in plasma wakefields”, IEEE Trans. Plasma Sci, vol. 36, no. 4, pp. 1751–1759, 2008.
https://doi.org/10.1109/TPS.2008.927430 - M. Mirzaie et al., “Effect of injection-gas concentration on the electron beam quality from a laser-plasma accelerator”, Phys. Plasmas, vol. 25, no. 4, 043106, 2018.
https://doi.org/10.1063/1.5008561 - T. Tajima and J.M. Dawson, “Laser electron accelerator”, Phys. Rev. Lett, vol. 43, no. 4, pp. 267-270, 1979.
https://doi.org/10.1103/PhysRevLett.43.267 - E. Esarey et al., “Physics of laser-driven plasma accelerators”, Rev. Mod. Phys, vol. 81, no. 3, pp. 1229-1285, 2009.
https://doi.org/10.1038/s41598-020-74256-w - W.P. Leemans, E. Esarey, “Laser-driven plasma-wave electron accelerators”, Phys. Today, vol. 62, no. 3, pp. 44-49, 2009.
https://doi.org/10.1063/1.3099645 - S.M. Hooker, “Developments in laser-driven plasma accelerators”, Nature Photonics, vol. 7, no. 10, pp. 775-782, 2013.
https://doi.org/10.1038/nphoton.2013.234 - M. Hansson et al., “Enhanced stability of laser wakefield acceleration using dielectric capillary tubes”, Phys. Rev. ST Accel. Beams, vol. 17, 031303, 2014.
https://doi.org/10.1103/PhysRevSTAB.17.031303 - S. Arjmand et al., “Characterization of plasma sources for plasma-based accelerators”, JINST, vol. 15, C09055, 2020.
https://doi.org/10.1088/1748-0221/15/09/C09055 - S. Arjmand et al., “Spectroscopic measurements as diagnostic tool for plasma-filled capillaries”, JACoW.IPAC2022, WEPOST035, 2022.
https://doi.org/10.18429/JACoW-IPAC2022-WEPOST035 - S. Arjmand et al., “Spectral line shape for plasma electron density characterization in capillary tubes”, J. Phys. Conf. Ser, vol. 2439, pp. 012012-1-3, 2023.
https://doi.org/10.1088/1742-6596/2439/1/012012 - S. Arjmand et al., “Shot-by-shot stability of the discharge produced plasmas in suitably shaped capillaries”, JINST, vol. 18, C04016, 2023.
https://doi.org/10.1088/1748-0221/18/04/C04016 - S. Arjmand et al., “Different elements, same results: time-resolved temperature determination by oxygen and nitrogen elements”, JINST, vol. 18, P08003, 2023.
https://doi.org/10.1088/1748-0221/18/08/P08003 - M.G. Ronga et al., “Back to the future: Very high-energy electrons (VHEEs) and their potential application in radiation therapy”, Cancers, vol. 13, no. 19, pp. 4942-1-19, 2021.
https://doi.org/10.3390/cancers13194942 - K. Kokurewicz et al., “Laser-plasma generated very high energy electrons (VHEEs) in radiotherapy”, Proc. SPIE, 10239, 102390C, 2017.
https://doi.org/10.1117/12.2271183 - S. Siddique et al., “FLASH radiotherapy and the use of radiation dosimeters”, Cancers, vol. 15, no. 15, 3883, 2023.
https://doi.org/10.3390/cancers15153883 - J.C.L Chow et al., “Flash radiotherapy: innovative cancer treatment”, Encyclopedia, vol. 3, no. 3, 2023.
https://doi.org/10.3390/encyclopedia3030058 - M.G. Ronga et al., “Back to the future: Very high-energy electrons (VHEEs) and their potential application in radiation therapy”, Cancers, vol. 13, no. 19, pp. 4942-1-19, 2021.
https://doi.org/10.3390/cancers13194942 - K. Kokurewicz et al., “Laser-plasma generated very high energy electrons (VHEEs) in radiotherapy”, Proc. SPIE, 10239, 102390C, 2017.
https://doi.org/10.1117/12.2271183 - L. Gizzi et al., “Laser–plasma acceleration of electrons for radiobiology and radiation sources”, Nucl. Instrum. Meth. B, vol. 355, pp. 241–245, 2015.
https://doi.org/10.1016/j.nimb.2015.03.050 - L. Labate et al., “Toward an effective use of laser-driven very high energy electrons for radiotherapy: Feasibility assessment of multi-field and intensity modulation irradiation schemes”, Sci. Rep, vol. 10, 17307, 2020.
https://doi.org/10.1038/s41598-020-74256-w - V. Favaudon et al., “Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice”, Sci. Transl. Med, vol. 6, no. 245, 245ra93, 2014.
https://doi.org/10.1126/scitranslmed.3008973 - S. Lee et al., “One-body capillary plasma source for plasma accelerator research at e-LABs”, Appl. Sci, vol. 13, no. 4, pp. 2564-1-10, 2023.
https://doi.org/10.3390/app13042564 - GEANT4 Toolkit.
https://geant4.web.cern.ch - C. M. Lazzarini et al., “Ultrarelativistic electron beams accelerated by terawatt scalable kHz laser”, Phys. Plasmas, vol. 31, 030703, 2024.
https://doi.org/10.1063/5.0189051 - J. Monzac et al., “Optical ionization effects in kHz laser wakefield acceleration with few-cycle pulses”, Phys. Rev. Research, vol. 6, 043099, 2024.
https://doi.org/10.1103/PhysRevResearch.6.043099
LASER DRIVEN USER FACILITIES AND STATUS OF I-LUCE AT LABORATORI NAZIONALI DEL SUD OF INFN (ITALY)
G.A.P. Cirrone, D. Margarone, S. Arjmand, G. Petringa, J. Suarez, R. Catalano, A.D. Pappalardo, D. Oliva, C. Altana, A. Amato, D. Bandieramonte, D. Bonanno, G. Cuttone, L. Giuffrida, C. Manna, A. Miraglia, M. Musumeci, D. Rizzo, S. Tudisco, M. Tringale, F. Vinciguerra
Received: 28 NOV 2024, Received revised: 7 FEB 2025, Accepted: 21 FEB 2025, Published online: 31 JULY 2025
Abstract | References | Cite This | Full Text (PDF)
- W.L. Linlor, “Ion energies produced by laser giant pulse”, Appl. Phys. Lett, vol. 3, no. 11, pp. 210-211, 1963.
https://doi.org/10.1063/1.1753852 - D. Lichtman, J.F. Ready, “Laser beam induced electron emission”, Phys. Rev. Lett, vol. 10, pp. 342-345, 1963.
https://doi.org/10.1103/PhysRevLett.10.342 - E.L. Clark et al., “Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids”, Phys. Rev. Lett, vol. 84, no. 4, pp. 670-673, 2000.
https://doi.org/10.1103/PhysRevLett.84.670 - A. Maksimchuk et al., “Forward ion acceleration in thin films driven by a high-intensity laser”, Phys. Rev. Lett, vol. 84, no. 18, pp. 4108-4111, 2000.
https://doi.org/10.1103/PhysRevLett.84.4108 - R.A. Snavely et al., “Intense high-energy proton beams from petawatt-laser irradiation of solids”, Phys. Rev. Lett, vol. 85, 2945, 2000.
https://doi.org/10.1103/PhysRevLett.85.2945 - A. Macchi, C. Benedetti, “Ion acceleration by radiation pressure in thin and thick targets”, Nucl. Instrum. Methods Phys. Res. A, vol. 620, no. 1, pp. 41-45, 2010.
https://doi.org/10.1016/j.nima.2010.01.057 - U. Linz, J. Alonso, “Laser-driven ion accelerators for tumor therapy revisited”, Phys. Rev. Accel. Beams, vol. 19, 124802, 2016.
https://doi.org/10.1103/PhysRevAccelBeams.19.124802 - G.A.P. Cirrone et al., “Ion acceleration by laser-matter interaction: status and perspective with the upcoming I-LUCE facility at INFN-LNS”, Proc. IPAC'23, pp. 4386-4388, 2023.
https://doi.org/10.18429/JACoW-IPAC2023-THPA179 - A. Macchi et al., “Ion acceleration by superintense laser-plasma interaction”, Rev. Mod. Phys, vol. 85, no. 2, pp. 751-793, 2013.
https://doi.org/10.1103/RevModPhys.85.751 - H. Daido et al., “Review of laser-driven ion sources and their applications”, Rep. Prog. Phys, vol. 75, no. 5, 056401, 2012.
https://doi.org/10.1088/0034-4885/75/5/056401 - S.C. Wilks et al., “Energetic Proton Generation in Ultra-Intense Laser-solid Interactions”, Phys. Plasmas, vol. 8, pp. 542-549, 2001.
https://doi.org/10.1063/1.1333697 - A. Macchi et al., “Laser acceleration of ion bunches at the front surface of overdense plasmas”, Phys. Rev. Lett, vol. 94, 165003, 2005.
https://doi.org/10.1103/PhysRevLett.94 estadual- J. Denavit, “Absorption of high-intensity subpicosecond lasers on solid density targets”, Phys. Rev. Lett, vol. 69, 3052, 1992.
https://doi.org/10.1103/PhysRevLett.69.3052- L.O. Silva et al., “Proton shock acceleration in laser-plasma interactions”, Phys. Rev. Lett, vol. 92, 015002, 2004.
https://doi.org/10.1103/PhysRevLett.92.015002- D. Jung et al., “Monoenergetic ion beam generation by driving ion solitary waves with circularly polarized laser light”, Phys. Rev. Lett, vol. 107, 115002, 2011.
https://doi.org/10.1103/PhysRevLett.107.115002- L. Yin et al., “Mono-energetic ion beam acceleration in solitary waves during relativistic transparency using high-contrast circularly polarized short-pulse laser and nanoscale targets”, Phys. Plasmas, vol. 18, no. 5, 053103, 2011.
https://doi.org/10.1063/1.3587110- T.Z. Esirkepov et al., “Coulomb explosion of a cluster irradiated by a high intensity laser pulse”, Laser Part. Beams, vol. 18, no. 3, pp. 503-506, 2000.
https://doi.org/10.1017/S0263034600183211- V.Y. Bychenkov, V.E. Kovaliev, “Plasma Phys. Rep.”, vol. 31, pp. 178-183, 2005.
https://doi.org/10.1134/1.1866599- L Yin et al., “Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets”, Phys. Plasmas, vol. 14, no. 5, 056706, 2007.
https://doi.org/10.1063/1.2436857- J.C. Fernandez et al., “Fast ignition with laser-driven proton and ion beams”, Nucl. Fusion, vol. 54, no. 5, 054006, 2014.
https://doi.org/10.1088/0029-5515/54/5/054006- J. Badziak et al., “Generation of picosecond high-density ion fluxes by skin-layer laser-plasma interaction”, Laser Part. Beams, vol. 23, no. 2, pp. 143-147, 2005.
https://doi.org/10.1017/S0263034605050238- J. Badziak et al., “Studies on laser-driven generation of fast high-density plasma blocks for fast ignition”, Part. Beams, vol. 24, no. 2, pp. 249-254, 2006.
https://doi.org/10.1017/S0263034606060368- J. Badziak et al., “Generation of ultraintense proton beams by multi-ps circularly polarized laser pulses for fast ignition-related applications”, Phys. Plasmas, vol. 18, 053108, 2011.
https://doi.org/10.1063/1.3590856- R.A. Simpson et al., “Demonstration of TNSA proton radiography on the National Ignition Facility Advanced Radiographic Capability (NIF-ARC) laser”, Plasma Phys. Control. Fusion, vol. 63, no. 12, 124006, 2021.
https://doi.org/10.1088/1361-6587/ac2349- C. Radier et al., “10 PW peak power femtosecond laser pulses at ELI-NP”, High Power Laser Science and Engineering, vol. 10, e21, 2022.
https://doi.org/10.1017/hpl.2022.11- D. Margarone et al., “ELIMAIA: A laser-driven ion accelerator for multidisciplinary applications”, Quantum Beam Sci., vol. 2, no. 2, 8, 2018.
https://doi.org/10.3390/qubs2020008- G.A.P. Cirrone et al., “ELIMED-ELIMAIA: The first open user irradiation beamline for laser-plasma-accelerated ion beams”, Front Phys, vol. 8, 564907, 2020.
https://doi.org/10.3389/fphy.2020.564907- F. Schillaci et al., “The ELIMAIA laser-plasma ion accelerator: technology commissioning and perspectives”, Quantum Beam Sci., vol. 6, no. 4, 30, 2020.
https://doi.org/10.3390/qubs6040030- U. Schramm et al., “First results with the novel petawatt laser acceleration facility in Dresden”, J. Phys.: Conf. Ser, vol. 874, 012028, 2017.
https://doi.org/10.1088/1742-6596/874/1/012028- C. Agodi et al., “Nuclear physics midterm plan at LNS”, Eur. Phys. J. Plus, vol. 138, 1038, 2023.
https://doi.org/10.1140/epjp/s13360-023-04358-7- C. Qin et al., “High efficiency laser-driven proton sources using 3D-printed micro structure”, Commun Phys, vol. 5, 124, 2022.
https://doi.org/10.1038/s42005-022-00900-8- F. Schillaci et al., “Design of a large acceptance, high efficiency energy selection system for the ELIMAIA beamline”, JINST, vol. 11, P08022, 2016.
https://doi.org/10.1088/1748-0221/11/08/P08022- W. Leemans et al., “The BErkeley Lab Laser Accelerator (BELLA): A 10 GeV laser plasma accelerator”, AIP Conf. Proc, vol. 1299, no. 1, pp. 3-11, 2010.
https://doi.org/10.1063/1.3520352- T. Tajima, J.M. Dawson, “Laser electron accelerator”, Phys. Rev. Lett, vol. 43, 267, 1979.
https://doi.org/10.1103/PhysRevLett.43.267- S. Arjmand et al., “Characterization of plasma sources for plasma-based accelerators”, JINST, vol. 15, C09055, 2020.
https://doi.org/10.1088/1748-0221/15/09/C09055- S. Arjmand et al., “Spectral line shape for plasma electron density characterization in capillary tubes”, J. Phys.: Conf. Ser, vol. 2439, 012012, 2023.
https://doi.org/10.1088/1742-6596/2439/1/012012- Q. Liu et al., “Characteristic diagnosis of supersonic gas jet target for laser wakefield acceleration with high spatial-temporal resolution Nomarski interference system”, Front. Phys, vol. 11, 1203946, 2023.
https://doi.org/10.3389/fphy.2023.1203946- S. Arjmand et al., “Spectroscopic measurements as diagnostic tool for plasma-filled capillaries”, JACoW.IPAC2022, WEPOST035, pp. 1776-1779, 2022.
https://doi.org/10.18429/JACoW-IPAC2022-WEPOST035- A.J. Gonsalves et al., “Transverse interferometry of a hydrogen-filled capillary discharge waveguide”, Phys. Rev. Lett, vol. 98, 025002, 2007.
https://doi.org/10.1103/PhysRevLett.98.025002 - J. Denavit, “Absorption of high-intensity subpicosecond lasers on solid density targets”, Phys. Rev. Lett, vol. 69, 3052, 1992.