Vol. 3, 2018

Table of contents



N. A. Metlyaeva, A. Yu. Bushmanov, V. I. Krasnuk, L. A. Yunanova, O. V. Shcherbatykh, A. S.Samoilov, D. Yu. Udalov

Pages: 1–5

DOI: 10.21175/RadProc.2018.01

The work was aimed to evaluate the adaptation of acute radiation sickness patients, victims of the Chernobyl Nuclear Power Plant (ChNPP) accident and different radiation accidents, who underwent follow-up psychophysiological examination. Clinical and psychophysiological follow-up examination covered 32 acute radiation sickness patients –11 with severe and extremely severe grade, who underwent Chernobyl nuclear power station accident, and 21 acute radiation sickness patients from other radiation accidents. The authors demonstrated the leading role of such psychological traits as hypochondriasis, anxiety about health, emotional tension, anxiety, inclination to depression, frustration tension, low self-confidence, suspiciousness, diffidence, affective rigidity, discontentment about the situation and personal position in it, restriction of contact with others - decrease of the stenicity and integration of behavior, that caused adaptation disorders in a distant period among acute radiation sickness patients victims of the Chernobyl nuclear power station accident and in acute radiation sickness patients from other radiation accidents. Intellectual faculties (according to the Cattell test) and imaginative and logic thinking (Raven’s test) in the patients who underwent radiation accidents were not affected, but were higher than the average in acute radiation sickness patients victims of the Chernobyl nuclear power station accident, especially in the first 15 years of observation, and equaled to the intellectual level of acute radiation sickness patients from other radiation accidents in the following 15 years of observation.
  1. Ф. Б. Березин, М. П Мирошников, Е. Д. Соколовa, Методика многостороннего исследования личности. Структура, основы интерпретации, некоторые области применения, 3. изд., Москва, Россия: Феликс Борисович, 2011. (F. B. Berezin, M. P. Miroshnikov, E. D. Sokolova, Method of multilateral study of personality. Structure, basis of interpretation, some areas of application, 3rd ed., Moscow, Russia: Felix Borsivich, 2011.)
  2. К. Н. Логановский, А. И. Нягу, “Характеристика психических расстройств у пострадавших вследствие Чернобыльской катастрофы в свете МКБ-10 Социальная и клиническая психиатрия,” т. 5, но. 2, стр. 15 – 23, 1995. (K. N. Loganovsky, A. I. Nyagu, “Characteristics of mental disorders in victims of the Chernobyl disaster in the light of ICD-10,” Social and Clinical Psychiatry, vol. 5, no. 2, pp. 15 – 23, 1995.)
  3. А. К. Наприенко, К. П. Логановский, “Пограничные нервно-психические расстройства у лиц, подвергшихся воздействию ионизирующего излучения,” Врачебное дело, но. 6, стр. 48 – 52, 1992. (A. K. Naprenenko, K. N. Loganovskiy. “Borderline neuropsychiatric disorders in persons exposed to ionizing radiation,” Medical work, no. 6. pp. 48 – 52, 1992.)
  4. А. К. Напреенко, К. Н. Логановский, “Систематика психических расстройств, связанных с последствиями аварии на ЧАЭС,” Врачебное дело, но. 5-6, стр. 25 – 28, 1995. (A. K. Naprenenko, K. N. Loganovskiy, “Systematics of Mental Disorders Associated with the Consequences of the Chernobyl Nuclear power plant accident,” Medical work, no. 5-6, pp. 25 – 29, 1995.)


Aleksandar P.S. Milovanović, Jelena Pajić, Dubravka Jovičić

Pages: 6–9

DOI: 10.21175/RadProc.2018.02

Occupational exposure to ionizing radiation (IR) involves operations with unsealed or sealed sources. Nuclear medicine staff using unsealed sources is of particular interest for dosimetry research because they are exposed to extremely inhomogeneous fields of ionizing radiation with an increased risk of internal contamination. The findings for two technicians who were unintentionally exposed to IR while operating unsealed sources in the Nuclear Medicine Department are presented here. Exposure evaluation was conducted at the Radiation Protection Center of the Serbian Institute of Occupational Health (SIOH). Values for the personal dose equivalent at a body depth of 10 mm at the point of application of the personal dosimeter [Hp(10)], the dose equivalent at a body depth 0.07 mm at the application point of the personal dosimeter [Hp(0.07)], and the results for chromosomal aberrations (CA) and micronuclei (MN) analysis after the first and control examinations at the Cytogenetic Laboratory (SIOH) are presented. The case report for Technician 1 (T1) is an example of agreement between the findings obtained by physical dosimetry and cytogenetic analysis in detecting unintentional exposure and internal contamination with high doses of radionuclides. The results also show that the cytokinesis block micronucleus (CBMN) test is a more sensitive technique in detecting internal contamination than CA analysis. Multiple MN are an unequivocal indicator of genetic damage. Since radiation is a strong inducer of MN, these genetic changes may be a certain biomarker of internal contamination.
  1. Practical Radiation Technical Manual, Individual Monitoring,IAEA-PRTM-2, IAEA, Vienna, Austria, 2004.
    Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/PRTM-2r1_web.pdf;
    Retrieved on: Aug. 10, 2018
  2. Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies, EPR-Biodosimetry 2011, IAEA, WHO, Vienna, Austria, 2011, pp. 173 – 193.
    Retrieved from: https://www-pub.iaea.org/MTCD/publications/PDF/EPR-Biodosimetry%202011_web.pdf;
    Retrieved on: Aug. 10, 2018
  3. D. Delacroix et al., “Radionuclide and Radiation Protection Data Handbook 2002,” Rad. Prot. Dosimetry,vol. 98, no. 1, pp. 9 – 168, Jan. 2002.
    DOI: 10.1093/oxfordjournals.rpd.a006705
  4. M. Fenech, S. Bonassi, “The effect of age, gender, diet and lifestyle on DNA damage measured usingmicronucleus frequency in human peripheral blood lymphocytes,” Mutagenesis, vol. 26, no. 1, pp. 43 – 49, Jan. 2011.
    DOI: 10.1093/mutage/geq050
    PMid: 21164181
  5. M. Fenech, Cytokinesis-block micronucleus cytome assay. Protocol,” Nature Protocols, vol. 2, pp. 1084 – 1104, May 2007.
    DOI: 10.1038/nprot.2007.77
    PMid: 17546000
  6. S. Bonassi, “Chromosomal aberrations in lymphocytes predict human cancer independently of exposure to carcinogens,” Cancer. Res. vol. 60, no. 6, pp. 1619 – 1625, Mar. 2000.
    Retrieved from: http://cancerres.aacrjournals.org/content/60/6/1619.full-text.pdf;
    Retrieved on: Aug. 10, 2018
  7. A. N. Jha, T. Sharma, “Enhanced frequency of chromosomal aberrations in workers occupationally exposed to diagnostic x-rays,” Mutat. Res. vol. 260, no. 4, pp. 343 – 348, Dec. 1991.
    DOI: 10.1016/0165-1218(91)90020-M
  8. D. Jovicic et al., “Detection of premature segregation of centromeres in persons exposed to ionizing radiation,” Health. Phys., vol. 98, no. 5, pp. 717 – 727, Jun. 2010.
    DOI: 10.1097/HP.0b013e3181d26da1
    PMid: 20386201
  9. G. Joksic, “Cytogenetic tests in the diagnosis of internal contamination with radionuclides,” Chem. Ind., vol. 55 pp. 273 – 276, May 2001.


Agnieszka Panek, Justyna Miszczyk

Pages: 10–14

DOI: 10.21175/RadProc.2018.03

One of the main factors that differentiate people in terms of the effectiveness of therapeutic procedures or side effects is the variability in DNA repair capabilities. The aim of the study was to investigate the response of DNA damage repair systems in human lymphocytes irradiated with the therapeutic proton beam in the Bronowice Cyclotron Center of Institute of Nuclear Physics, Polish Academy of Sciences (IFJ PAN) in compare to X-rays. Lymphocytes from healthy donors were irradiated in the Spread-Out Bragg Peak of the proton beam or as reference X-rays. For both sources of radiation, the kinetics of the DNA damage repair capabilities were estimated using the comet assay method (0–120 min) and γ-H2AX test (0-24h). Preliminary results from the comet assay show a similar time and repair efficiency of induced DNA damage for both types of radiation. However, in a group involving X-rays, significant inter-individual differences were observed. With the γ-H2AX test, inter-individual differences in the repair capabilities were not noted. These findings indicate that induced DNA damage repair mechanisms after proton irradiation may be different when compared to X-rays.
  1. N. S. Gavande et al., “DNA repair targeted therapy: the past or future of cancer treatment?,” Pharmacol. Ther., vol. 160, pp. 65 – 83, Apr. 2016.
    DOI: 10.1016/j.pharmthera.2016.02.003
    PMid: 26896565
  2. W. D. Wang et al., “Correlation between DNA repair capacity in lymphocytes and acute side effects to skin during radiotherapy in nasopharyngeal cancer patients,” Clin. Cancer. Res., vol. 11, pp. 5140 – 5145, Jul. 2005.
    DOI: 10.1158/1078-0432.CCR-04-2548
    PMid: 16033828
  3. A. Suetens et al., “Higher initial DNA damage and persistent cell cycle arrest after carbon ion irradiation compared to X-irradiation in prostate and colon cancer cells,” Front. Oncol., vol. 6, pp. 87 – 97, Apr. 2016.
    DOI: 10.3389/fonc.2016.00087
    PMid: 27148479
    PMCid: PMC4830044
  4. J. Praveen et al., “Determination of relative biological effectiveness of 3.2 MeV proton beam from folded tandem ion accelerator,” IJPAP, vol. 50, no. 11, pp. 789 – 792, Nov. 2012.
    Retrieved from: http://nopr.niscair.res.in/handle/123456789/14903;
    Retrieved on: Jun. 12, 2018
  5. E. Pastwa et al., “Repair of radiation-induced DNA double-strand breaks is dependent upon radiation quality and the structural complexity of double-strand breaks,” Radiat. Res., vol. 159, pp. 251 – 261, Feb. 2003.
    DOI: 10.1667/0033-7587(2003)159[0251:RORIDD]2.0.CO;2
  6. I. L. Ibañez et al., “Induction and Rejoining of DNA Double Strand Breaks Assessed by H2AX Phosphorylation in Melanoma Cells Irradiated with Proton and Lithium Beams,” Int. J. Radiat. Oncol. Biol. Phys., vol. 74, no. 4, pp. 1226 – 1235, Jul. 2009.
    DOI: 10.1016/j.ijrobp.2009.02.070
    PMid: 19545788
  7. J. Miszczyk et al., “Response of human lymphocytes to proton radiation of 60 MeV compared to 250 kV X-rays by the cytokinesis-block micronucleus assay,” Radiother. Oncol., vol. 115, pp. 128 – 134, Apr. 2015.
    DOI: org/10.1016/j.radonc.2015.03.003
  8. J. Miszczyk et al., “Do protons and X-rays induce cell-killing in human peripheral blood lymphocytes by different mechanisms?,” Clin. Trans. Rad. Oncol., vol. 9, pp. 23 – 29, Jan. 2018.
    DOI: 10.1016/j.ctro.2018.01.004
    PMid: 29594247
  9. J. Swakoń et al., “Facility for proton radiotherapy of eye cancer at IFJ PAN in Krakow,” Radiat. Meas., vol. 45, pp. 1469 – 1471, 2010.
    DOI: 10.1016/j.radmeas.2010.06.020
  10. S. Sorokina et al., “Relative biological efficiency of protons at low and therapeutic doses in induction of 53BP1/γH2AX foci in lymphocytes from umbilical cord blood,” IJRB, vol. 89, no. 9, pp. 716 – 723, Sep. 2013.
    DOI: 10.3109/09553002.2013.797619
  11. S. Horn, S. Barnard, K. Rothkamm, “Gamma-H2AX-based dose estimation for whole and partial body radiation exposure,” PLoS ONE, vol. 6, no. 9, e25113, Sep. 2011.
    DOI: 10.1371/journal.pone.0025113
  12. A. Cebulska-Wasilewska, “Response to challenging dose of X-rays as a predictive assay for molecular epidemiology,” Mutat. Res., vol. 544, pp. 289 – 297, Nov. 2003.
    DOI: 10.1016/j.mrrev.2003.07.003
    PMid: 14644330
  13. A. Panek et al., “Radiosensitivity and DNA repair in human lymphocytes pre-treated with new radio-protectors (nicotinamide, 1 - methyl -nicotinamide),” in Rapid diagnosis in populations at risk from radiation and chemicals, A. Cebulska-Wasilewska, A. N. Osipov, F. Darroudi, Eds., Amsterdam, Netherlands: IOS Press, 2010, pp. 255 – 261.
  14. A. Panek et al., “Biological effects and inter-individual variability in peripheral blood lymphocytes of healthy donors exposed to 60 MeV proton radiotherapeutic beam,” Int. J. Radiat. Biol., Oct. 2018.
    DOI: 10.1080/09553002.2019.1524941
  15. O. Zlobinskaya et al., “Induction and repair of DNA double-strand breaks assessed by gamma-H2AX foci after irradiation with pulsed or continuous proton beams,” Radiat Environ Biophys., vol. 51, no. 1, pp. 23 – 32, Mar. 2012.
    DOI: 10.1007/s00411-011-0398-1.
  16. G. Borrego-Soto et al., “Ionizing radiation-induced DNA injury and damage detection in patients with breast cancer,” Genet. Mol. Biol., vol. 38, no. 4, pp. 420 – 432, Oct-Dec. 2015.
    DOI: 10.1590/S1415-475738420150019
    PMid: 26692152
  17. O. Mohamad et al., “Carbon ion radiotherapy: a review of clinical experiences and preclinical research, with an emphasis on DNA damage/repair,” Cancers, vol. 9, no. 6, pp. 66 – 96, Jun. 2017.
    DOI: 10.3390/cancers9060066
    PMid: 28598362
  18. R. Fernandez-Gonzalo, S. Baatout, M. Moreels, “Impact of particle irradiation on the immune system: from the clinic to Mars,” Front. Immunol., vol. 8, p. 177, Feb. 2017.
    DOI: 10.3389/fimmu.2017.00177
    PMid: 28275377
  19. S. Diegeler, C. E. Hellweg, “Intercellular communication of tumor cells and immune cells after exposure to different ionizing radiation qualities,” Front. Immunol., vol. 8, pp. 664 – 678, Jun. 2017.
    DOI: 10.3389/fimmu.2017.00664
    PMid: 28638385

Radiation Chemistry


I. F. Myroniuk, H. V. Vasylyeva

Pages: 15–20

DOI: 10.21175/RadProc.2018.04

In present investigations, the sorption removal of Sr2+ and Y3+ ions from aqueous solutions by TiO2 – La sorbent was researched. The dependence of the sorption process on the time of interaction, solution’s acidity, and initial concentrations of the Sr2+ and Y3+ ions were investigated. Four simplified kinetic models – Lagergren’s pseudo-first and pseudo-second order kinetic models, Intra-particle diffusion and Elovich models – were tested to describe the adsorption process. Equilibrium isotherms data were analyzed using Langmuir and Freundlich isotherm models. The kinetic data indicated that the adsorption of Sr2+ and Y3+ ions by ТіО2–La fitted well with the pseudo-second order kinetic model with coefficients of linear approximation (R2 = 0.99) for both elements. The application of the Elovich model to the experimental data of the sorption of Sr2+ and Y3+ ions by ТіО2–La shows that yttrium is absorbed due to the mechanism of chemisorption. Coefficient of linear approximation R2 = 0.98. Strontium is absorbed via physical sorption or ion exchange mechanism. The maximum adsorption capacity of ТіО2 –La was found to be 0,9 mmol·g-1 (79 mg g-1) for Sr2+ and 1.6 mmol·g-1 (134 mg·g-1) for Y3+.
  1. M. Torab-Mostaedi et al., “Removal of Strontium and Barium from aqueous solutions by adsorption onto expanded perlite,” Can. J. Chem. Eng., vol. 89, no. 5, pp. 1247 – 1254, Oct. 2011.
    DOI: 10.1002/cjce.20486
  2. Y. Takahatake, A. Shibata, K. Nomura, T. Sato, “Effect of flowing water on Sr sorption change of hydrous sodium titanate,” Minerals, vol. 7, no. 12, Dec. 2017.
    DOI: 10.3390/min7120247
  3. D. J. Davidson, J. L. Collins, K. K. Anderson, C. W. Chase, B. J. Egan, “Removal of Cesium, Technetium and Strontium from Tank Waste Supernatant,” Rep. ORNL/TM-13612, ORNL, Oak Ridge (TN), USA, 1998.
    Retrieved from: https://www.researchgate.net/publication/279530150_Removal_of_Cesium_Technetium_and_Strontium_from_Tank_Waste _Supernatant_ORNLTM-13612;
    Retrieved on: Aug. 15, 2018
  4. І. Ф. Миронюк, В. Л. Челядин, “Методи одержання діоксиду титану (огляд),” Фізика і Хімія Твердого Тіла, т. 11, но. 4, с. 815 – 831, 2010. (I. F. Myroniuk, V. L. Chelyadyn, “Obtaining methods of Titanium Dioxide (Reviev),” Phys. Chem. Solid State, vol. 11, no. 4, pp. 815 – 831, 2010.)
    Retrieved from: http://old.pu.if.ua/inst/phys_che/start/pcss/vol11/1104-03.pdf;
    Retrieved on: Aug. 15, 2018
  5. І. Ф. Миронюк, В. Л. Челядин, В. О. Коцюбинський, Л. І. Миронюк, “Будова та морфологія частинок ТіО2, одержаних рідкофазним гідролізом TiCl4,Фізика і Хімія Твердого Тіла, т. 12, но. 2, с. 418 – 427, 2011. (I. F. Myroniuk, V. L. Chelyadyn, V. O. Kotsyubinsky, L. I. Mironyuk еt al., “Structure and Morphology of TiO2 obtaining by Liquid-Phase TiCl4 hydrolysis,” Phys. Chem. Solid State, vol. 12, no. 2, pp. 418 – 427, 2011.)
    Retrieved from: http://irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?C21COM=2&I21DBN=UJRN&P21DBN=UJRN&IMAGE_ FILE_DOWNLOAD=1&Image_file_name=PDF/PhKhTT_2011_12_2_27.pdf;
    Retrieved on: Aug. 15, 2018
  6. Г. Шварценбах, Г. Флашка, Комплексо нометрическое титрование, Москва, СССР: Химия, 1970. (G. Schwarzenbach, H. Flaschka, Complex titrations, Moscow, USSR: Chimiya, 1970.)
  7. Atlas of Eh-pH diagrams, AIST, Tokyo, Japan, 2005.
    Retrieved from: http://www.eosremediation.com/download/Chemistry/Chemical%20Properties/Eh_pH_Diagrams.pdf;
    Retrieved on: Aug. 15, 2018
  8. H. V. Vasylyeva et al., “Radiochemical studies of lanthanum microamounts in water solution,” J. Mol. Liq., vol. no. 1-3, pp. 41 – 44, Apr. 2005.
    DOI: 10.1016/j.molliq.2004.07.008
  9. I. S. Mclintock, “The Elovich Equation in chemisorption kinetics,” Nature,vol. 216, pp. 1204 – 1205, Dec. 1967.
  10. N. H. Turner, “Kinetic of Cemisorption: An examination of the Elovich Equation,” J. Catal., vol. 36, no. 3, pp. 262 – 265, Mar. 1975.
    DOI: 10.1016/0021-9517(75)90035-4
  11. W. Rudzinski, W. Plazinski, “Kynetic of Solute Adsorption at Solid/Solution Interfaces: A Theoretical Development of the Empirical Pseudo-First and Pseudo-Second Order Kinetic Rate Equation, Based on Applying the Statistical Rate Theory of Interfacial Transport,” Phys. Chem. B, vol. 110, no. 33, pp. 16514 – 16525, Aug. 2006.
    DOI: 10.1021/jp061779n
  12. Y-S. Ho, “Citation review of Lagergren kinetic rade equation on adsorption reactions,” Scientometrics, vol. 59. no. 1, pp. 171 – 177, Jan. 2004.
    DOI: 10.1023/B:SCIE.0000013305.99473.cf
  13. N. R. Villarante, A. Patrick, R. Bautista, D. Erl, P. Sumalapao, “Batch Adsorption Study and kinetic profile of Cr(VI) Uzing Lumbang (Aleurites moluccana)-Derived Activated Carbon-Chitozan Compozite Crosslinked with Epichlorohydrin,” Orient. J. Chem., vol. 33, no. 3, pp. 1111 – 1119, 2017.
    DOI: 10.13005/ojc/330307
  14. Y-S. Ho, G. McKay, “Application of kinetic models to the sorption of copper (II) on to peat,” Adsorpt. Sci. Technol., vol. 20, no. 8, pp. 797 – 815, Oct. 2002.
    DOI: 10.1260/026361702321104282
  15. M. Kanna, S. Wongnawa, P. Sherdshoopongse, Ph. Boonsin, “Adsorption behavior of some metal ions on hydrated amorphous titanium dioxide surface,” Songklanakarin J. Sci. Technol. vol. 27, no. 5, pp. 1017 – 1026, Sep-Oct. 2005.
    Retrieved from: http://rdo.psu.ac.th/sjstweb/journal/27-5/10-ions-adsorption.pdf;
    Retrieved on: Aug. 15, 2018
  16. Y-S. Ho, G. McKay, “Pseudo-second order model for sorption processes,” Process Biochemistry, vol. 34, no. 5, pp. 451 – 465, Jul. 1999.
    DOI: 10.1016/S0032-9592(98)00112-5
  17. Standard Deviation Calculator, Maple Tech. International LLC, Timberloch PI (TX), USA, 2018.
    Retrieved from: http://www.calculator.net/standard-deviation-calculator.html;
    Retrieved on: Aug. 15, 2018
  18. A. W. Adamson, Physical Chemistry of Surfaces, 3rd ed., New York (NY), USA: Wiley-Interscience, 1976.
  19. M. Daniel, M. Vasiliki, P. Alexandros, Sorption of the Rare Earth Elements and Yttrium (REE-Y) in calcite: the mechanism of a new effective tool in identifying paleoearthquakes on carbonate faults, Rep. EGU2015-3437, European Geosciences Union, Vienna, Austria, 2015.
    Retrieved from: http://meetingorganizer.copernicus.org/EGU2015/EGU2015-3437.pdf;
    Retrieved on: Aug. 15, 2018
  20. K. A. Quinn, R. H. Byrne, J. Schijf, “Sorption of Yttrium and Rare earth Elements by Amorphous Ferric Hydroxide: Influence of temperature,” Environ. Sci. Technol., vol. 41, no. 2, pp. 541 – 546, 2007.
    DOI: 10.1021/es0618191
  21. K. A. Quinn, “Influence of solution and surface chemistry on yttrium and rare earth elements sorption,” Ph.D. dissertation, University of South Florida, Dept. Marine Science, Tampa (FL), USA, 2006.
    Retrieved from: https://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=3664&context=etd;
    Retrieved on: Aug. 15, 2018

Radiation Measurements


Manjola Shyti, Miha Trdin

Pages: 21–24

DOI: 10.21175/RadProc.2018.05

Radium (Ra) isotopes are important from the viewpoints of radiation protection and environmental protection. Radium is routinely analyzed in drinking water. Radium isotopes can be analyzed by different analytical methods based on gamma spectrometric measurements or alpha spectrometry. Modern gamma spectrometry systems are typically operated via computer software applications. In this study, the LabSOCS (Laboratory Sourceless Calibration Software) mathematical efficiency calibration software is used. An improved method was developed to determine radium isotopes from water using gamma spectrometry after micro-coprecipitation as lead (radium) sulfate method for radiochemical separation (Pb(Ra)(Ba)SO4). This method was successfully modified to allow direct determination of 226Ra and 228Ra by gamma spectrometry. However, large volumes of samples and/or long waiting time (20 days), before radioactive equilibrium is established, are required for accurate 226Ra activity concentration determination. The amounts of 226Ra and 228Ra on the sample were quantified by using gamma spectrometric analysis for its 186 keV gamma emission, 351.9 (214Pb), 295.2 (214Pb), and 609.3 (214Bi), 1764.5 (214Bi) and for 228Ra can be nonetheless achieved via its daughter nuclide 228Ac in 911.2 and 969 keV gamma emission. The radiochemical recovery was 93% and 100% for 226Ra and 228Ra, respectively. The Minimum Detectable Activities (MDAs) for 8L of sample and a measuring time of 2.3 days for 226Ra and 228Ra were calculated. The best results were obtained when the herein described method was combined with LabSOCS calculations.
  1. Environmental Behaviour of Radium: Volume 1, IAEA Technical Reports Series No. 310, IAEA, Vienna, 1990. pp. 3 – 10.
    Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/21/039/21039568.pdf;
    Retrieved on: Aug. 17, 2018
  2. Analytical Methodology for the Determination of Radium Isotopes in Environmental Samples, IAEA/AQ/19, IAEA, Vienna, Austria, 2010.
    Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/IAEA-AQ-19_web.pdf;
    Retrieved on: Aug. 17, 2018
  3. H. M. Diab, W. M. Abdellah, “Validation of 226Ra and 228Ra Measurements in Water Samples Using Gamma Spectrometric Analysis,” J. Water Resource Prot., vol. 5, no. 8A, pp. 53 – 57, Aug. 2013.
    DOI: 10.4236/jwarp.2013.58A008
  4. K. Horiuchi, T. Ishii, Y. Murakami, “Results on the Simultaneous Determination of Rn, Rn and 226Ra Contents in Mineral Springs of Izu Peninsula,” Journal of Balneological Society of Japan, vol. 30, no. 30, pp. 84 – 89, 1979.
  5. L. A. Currie, “Limits for Qualitative Detection and Quantitative Determination: Application to Radiochemistry,” Anal. Chem., vol. 40, no. 3, pp. 586 – 593, Mar. 1968.
    DOI: 10.1021/ac60259a007


Alketa Sinanaj, Blerina Papajani

Pages: 25–31

DOI: 10.21175/RadProc.2018.06

The X-ray fluorescence method is known as a laboratory method and one of the few atomic spectroscopy methods used in many fields. The process of emission of the characteristic X-rays is called “X-ray fluorescence” (XRF). The objectives of this research study are optimization of the XRF portable system geometry and the use of the fundamental parameters method to calculate the concentrations of elements in environmental samples using portable systems. Since this method is quick in getting results and does not destroy the sample, it is widely used both in research and in the analysis of industrial products for materials in the field of mineralogy, geology, environmental analysis of water, air, etc. Various experiments have led to the optimization of the geometry system, as the distances’ minimization, angles optimization, and the assessment of the beam spot in the position of the sample. Most of the data collected are used as initial data in the ADMCA program that uses fundamental parameters (FP-XRF) for calculating the concentrations of elements in environmental samples. Errors in calculating the concentrations of the sediment and soil samples when we introduce the approximate content of light elements can be eligible for geochemical studies. During the research, several areas that can be used in the future to improve the results are identified.
  1. R. Tertian, F. Claisse, Principles of Quantitative X-Ray Fluorescence Analyses, London, UK: Heyden, 1982.
  2. I. Orlic, J. Makjanie, D. Raos, V. Valkovic, “A general way of solving matrix effect problems in elemental analysis by EDXRFS,” X-Ray Spectrom., vol. 17, no. 4, pp. 139 – 143, Aug. 1988.
    DOI: 10.1002/xrs.1300170405
  3. E. P. Bertin, Introduction to X-ray Spectrometric Analyses, New York (NY), USA: Plenum Press, 1978.
    DOI: 10.1007/978-1-4899-2204-5
  4. W. Hanke, J. Wernisch, C. Pöhn, “Fluorescence yields, ωk (12 ≤ Z ≤ 42) and ωLs (38 ≤ Z ≤ 79), from a comparison of literature and experiments (SEM),” X-Ray Spectrom., vol. 14, no. 1, pp. 43 – 47, Jan. 1985.
    DOI: 10.1002/xrs.1300140110
  5. J. Sherman, “The theoretical derivation of fluorescent X-ray intensities from mixtures,” Spectrochim. Acta, vol. 7, pp. 283 – 306, 1955.
    DOI: 10.1016/0371-1951(55)80041-0
  6. J. W. Criss, L. S. Birks, “Calculation methods for fluorescent x-ray spectrometry. Empirical coefficients versus fundamental parameters,” Anal. Chem., vol. 40, no. 7, pp. 1080 – 1086, Jun. 1968.
    DOI: 10.1021/ac60263a023
  7. T. Shiraiwa, N. Fujino, “Theoretical Calculation of Fluorescent X-Ray Intensities in Fluorescent X-Ray Spectrochemical Analysis,” Jap. J. Appl. Phys., vol. 5, no. 10, pp. 886 – 899, Oct. 1966.
    DOI: 10.1143/JJAP.5.886
  8. W. H. McMaster, N. K. Delgrade, J. H. Mallet, J. H. Hubbel, Compilation of X-ray Cross Sections, Berkeley (CA), USA: University of California, 1969.
  9. E. Vataj, “Perdorimi i metodes se Fluoreshences se rrezatimit X me dispersion energjitik per studimin e objekteve rrej qelqi,” disertacioni i M.Sc., Universiteti i Tiranës, Fakulteti i Shkencave Natyrore, Tirana, Albania, 2011. (E. Vataj, “Using the method of X-ray fluorescence with energy dispersive for the study of the glass objects,” M.Sc. dissertation, University of Tirana, Faculty of Natural Sciences, Tirana, Albania. 2011.)
  10. XRF FP Software guide v.3.3.0, Amptec, Bedford (MA), USA, 2016.
    Retrieved from: https://www.physlab.org/wp-content/uploads/2016/04/XRF-FPSoftwareGuidev330.pdf;
    Retrieved on: Jun. 13, 2018
  11. XRS-FP Software Guide v.4.6.0, CrossRoads Scientific, El Granada (CA), USA, 2013.
    Retrieved from: http://www.crossroadsscientific.com/Concrete5/files/2013/3408/6160/XRS-FP_Software_Guide_v460.pdf;
    Retrieved on: Jun. 13, 2018
  12. XRF-FP Calibration and Auto-Run, Amptec, Bedford (MA), USA, 2018.
    Retrieved from: http://compassweb.ts.infn.it/rich1/Stefano/Amptek_SW/Quantitative%20Analysis%20(XRF-FP)/XRF-FP%20Analysis%20w ith%20Standards%20and%20Auto-Mode.pdf;
    Retrieved on: Jun. 13, 2018


Aleksandar Jevremović, Aleksandar Kandić, Mirjana Djurašević, Ivana Vukanac, Igor Čeliković, Zoran Milošević, Jovan Puzović

Pages: 32–35

DOI: 10.21175/RadProc.2018.07

The coincidence summing effect plays an important role in HPGe spectrometry, especially at low source-detector distances, due to a large solid angle; therefore, the calculation of correction factors is necessary. The aim of the research described in this paper was to compare values of correction factors for a 22Na point source obtained using the GESPECOR software package (Monte-Carlo method) and experimentally obtained values. Measurements were performed using a semiconductor HPGe spectrometer and the point source axially positioned at nine different distances from the detector end-cap. For the purpose of determining correction factors, a system of equations was formed, which, besides nuclear data as the input parameters, uses the experimentally obtained values of the total count in the entire spectrum, as well as the counts in the full energy peaks. The system of equations was solved for each particular case and correction factors were determined. By comparing the results obtained using the experimental and Monte-Carlo method, it was found that the correction factors for the 22Na point source have discrepancies less than 3%. The significance of these discrepancies was also verified from a statistical point of view using a Student's t-test.
  1. K. Debertin, U. Shotzig, “Coincidence summing corrections in Ge(Li)-spectrometry at low source-to-detector distance,” Nucl. Instrum. Meth., vol. 158, pp. 471 – 477, Jan. 1979.
    DOI: 10.1016/S0029-554X(79)94845-6
  2. D. S. Andreev, K. I. Erokhina, V. S. Zvonov, I. Kh. Lemberg, “Consideration of cascade transitions in determining the absolute yield of gamma rays, (English translation),” Prib. Tekh. Eksp., no. 5, pp. 539 – 108, 1972.
  3. K. Debertin, R. G. Helmer, “Coincidence-summing corrections,” in Gamma and X- ray spectrometry with Semiconductor detectors, Amsterdam, Netherlands: Elsevier Science Publishers B. V., 1988, ch. 4, sec. 4.5., pp. 258 – 269.
  4. T. U. Semkow, G. Mehmood, P. Parekh, M. Virgil, “Coincidence summing in gamma-ray spectroscopy,” Nucl. Instrum. Methods Phys. Res. A, vol. 290, no. 2-3, pp. 437 – 444, May 1990.
    DOI: 10.1016/0168-9002(90)90561-J
  5. G. Anil Kumar, I. Mazumdar, D. A. Gothe, “Efficiency calibration and coincidence summing correction for large arrays of NaI(Tl) detectors in soccer-ball and castle geometries,“ Nucl. Instrum. Methods Phys. Res. A, vol. 611, no. 1, pp. 76 – 83, Nov. 2009.
    DOI: 10.1016/j.nima.2009.09.005
  6. O. Sima, D. Arnold, “Accurate computation of coincidence summing corrections in low level gamma-ray spectrometry,” Appl. Radiat. Isot., vol. 53, no. 1-2, pp. 51 – 56, Jul. 2000.
    DOI: 10.1016/S0969-8043(00)00113-5
    PMid: 10879837
  7. D. Arnold, O. Sima, “Total versus effective total efficiency in the computation of coincidence summing corrections in gamma-ray spectrometry of volume sources,” J. Radional. Nucl. Ch., vol. 248, no. 2, pp. 365 – 370, 2001.
    DOI: 10.1023/A:1010671823736
  8. M. Dhibar, D. Mankad, I. Mazumdar, G. Anil Kumar, “Efficiency calibration and coincidence summing correction for a large volume (946 cm3) LaBr3(Ce) detector: GEANT4 simulations and experimental measurements,” Appl. Radiat. Isot., vol. 118, pp. 32 – 37, Dec. 2016.
    DOI: 10.1016/j.apradiso.2016.08.013
    PMid: 27587372
  9. Tables of evaluated data and comments on evaluation, LNE-LNHB/CEA, Paris, France, 2009.
    Retrieved from: http://www.nucleide.org/DDEP_WG/Nuclides/Na-22_tables.pdf;
    Retrieved on: Aug. 19, 2018
  10. S. Mangano, Mathematica Cookbook, Sebastopol (CA), USA: O’Reilly, 2010.
    Retrieved from: https://math.bme.hu/~jtoth/Mma/Mathematica%20Cookbook.pdf;
    Retrieved on: Aug. 19, 2018
  11. Gespecor version 4.2-manual, CID Media GmbH-Geweberpark, Birkenhain, Germany, 2010,


Mariia Pyshkina, Michael Zhukovsky, Alexey Ekidin

Pages: 36–41

DOI: 10.21175/RadProc.2018.08

Albedo thermoluminescent and direct-reading electron personal neutron dosimeters were examined. The ratio introduced by the difference between calibration and operational spectra were studied. The ratio of dosimeter reading and personal dose equivalent to a variety of workplace spectra after calibration is in the range from 0.6 up to 106. A new dosimeter for neutron exposure was presented. It is suggested that the dosimeter should be used inside of the body. The difference between its response function and fluence-to-effective dose conversion function is in the factor of 7 and 9 for anteroposterior (AP) and rotation (ROT) exposure geometries respectively. This dosimeter might be used at emergency situations, when neutron spectrum is similar to one of nuclear fuel radionuclides fission reaction.
  1. The 2007 Recommendations of the International Commission on Radiological Protection, ICRPPublication 103, ICRP, Vienna, Austria, 2007.
    Retrieved from: https://journals.sagepub.com/doi/pdf/10.1177/ANIB_37_2-4;
    Retrieved on: Nov. 20, 2018
  2. F. d’Errico, A. J. Bos, “Passive detectors for personal neutron dosimetry: state of art,” Rad. Prot. Dosim., vol. 110, no. 1-4, pp. 195 – 200, Aug. 2004.
    DOI: 10.1093/rpd/nch129
    PMid: 15353644
  3. B. M. Frietas, M. M. Martins, W. W. Pereira, A. X. da Silva, C. L. P. Mauricio, “MCNP simulation of the Hp(10) energy response of a brazilian TLD albedo neutron individual dosemeter, from thermal to 20 MeV,” Rad. Prot. Dosim., vol. 170, no. 1-4, pp. 350 – 353, Sep. 2016.
    DOI: 10.1093/rpd/ncv379
    PMid: 26276807
  4. T. Haninger, J. Henniger, “Dosimetric properties of the new TLD albedo neutron dosemeter AWST-TL-GD 04,” Rad. Prot. Dosim., vol. 170, no. 1-4, pp. 150 – 153, Sep. 2016.
    DOI: 10.1093/rpd/ncv406
    PMid: 26405220
  5. M. Luszik-Bhadra et al. “An active personal dosemeter / spectrometer for neutrons”, Rad. Prot. Dosim., vol. 84, no. 1-4, pp. 375 – 380, Aug. 1999.
    DOI: 10.1093/oxfordjournals.rpd.a032760
  6. W. G. Alberts et al. “Development of electronic personal neutron dosimeters: A European co-operation,” Rad. Prot. Dosim., vol. 96, no. 1-3, pp. 251 – 254, Jul. 2001.
    DOI: 10.1093/oxfordjournals.rpd.a006594
  7. R. I. Scherpelz, J. R. Cezeaux, “Performance of the EPD-N2 dosemeter for monitoring aircrew doses,” Rad. Prot. Dosim., vol. 163, no. 4, pp. 415 – 423, Mar. 2015.
    DOI: 10.1093/rpd/ncu234
  8. M. Luszik-Bhadra “Electronic personal neutron dosemeters for high energies: measurements, new developments and further needs,” Rad. Prot. Dosim., vol. 126, no. 1-4, pp. 487 – 490, Aug. 2007.
    DOI: 10.1093/rpd/ncm098
  9. M. Luszik-Bhadra et al. “A CR-39 track dosimeter for routine individual neutron monitoring”, Rad. Prot. Dosim., vol. 55, no. 4, pp. 285 – 293, Nov. 1994.
    DOI: 10.1093/oxfordjournals.rpd.a082404
  10. R. Tanner, P. J. Gilvin, J. D. Steele, D. T. Bartlett, S. M. Williams, “The NRPB PADC neutron personal dosimeter: Recent developments,” Rad. Prot. Dosim., vol. 34, no. 1-4, pp. 17-20, Dec. 1990.
    DOI: 10.1093/oxfordjournals.rpd.a080836
  11. M. Hajek, R. Cruz Suárez, “A solution for neutron personal dosimetry in the absence of workplace spectrometry,” Rad. Prot. Dosim., vol. 170, no. 1-4, pp. 265 – 268, Sep. 2016.
    DOI: 10.1093/rpd/ncv392
  12. Compendium of Neutron Spectra and Detector Responses for Radiation Protection Purposes, Technical report series No. 403, IAEA, Vienna, Austria, 2001, p. 337.
    Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/TRS403_scr.pdf;
    Retrieved on: Nov. 20, 2018
  13. Reference neutron radiations, ISO 8529, Feb. 1, 2001.
  14. L. G. Beskrovnaya, E. A. Goroshkova, Yu. V. Mokrov, “An Investigation into the Accuracy of the Albedo Dosimeter DVGN-01 in Measuring Personnel Irradiation Doses in the Fields of Neutron Radiation at Nuclear Power Installations of the Joint Institute for Nuclear Research,” Phys. Part. Nuclei Lett., vol. 7, no. 3, pp. 212 – 221, May 2010.
    DOI: 10.1134/S1547477110030088
  15. M. Luszik-Bhadra et al., “Summary of personal neutron dosimeter results obtained within the EVIDOS project,” Rad. Prot. Dosim., vol. 125, no. 1-4, pp. 293 – 299, Jul. 2007.
    DOI: 10.1093/rpd/ncm190
  16. J. M. Bordy et al. “Performance test of dosimetric services in the EU member states and Switzerland for the routine assessment of individual doses (photon, beta and neutron),” Rad. Prot. Dosim., vol. 89, no. 1-2, pp. 107 – 154, Jun. 2000.
    DOI: 10.1093/oxfordjournals.rpd.a033054
  17. F. Vanhavere, V. Cauwels, “Establishing local workplace field correction factors for neutron personal dosemeters,” Rad. Prot. Dosim., vol. 161, no. 1-4, pp. 307 – 311, Oct. 2014.
    DOI: 10.1093/rpd/ncu194
  18. T. Haninger, P. Kleinau, S. Haninger, “Field calibration of a TLD albedo dosemeter in the high-energy neutron field of CERF,” Rad. Prot. Dosim., vol. 174, no. 3, pp. 315 – 321, Apr. 2017.
    DOI: 10.1093/rpd/ncw166
  19. G. Fehrenbacher, F. Gutermuth, E. Kozlova, T. Radon, R. Schuetz, “Neutron dose measurements with the GSI ball at high-energy accelerators,” Rad. Prot. Dosim., vol. 125, no. 1-4, pp. 209 – 212, Jul. 2007.
    DOI: 10.1093/rpd/ncl127
  20. Occupational Radiation Protection, General Safety Guide No. GSG-7, IAEA, Vienna, Austria, 2018, p. 335
    Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/PUB1785_web.pdf;
    Retrieved on: Nov. 20, 2018
  21. A. Ferrari, P. R. Sala, A. Fasso, J. Ranft, FLUKA: a multi-particle transport code, Rep. SLAC-R-773, CERN, Geneva, Switzerland, 2000.
    Retrieved from: https://www.slac.stanford.edu/pubs/slacreports/reports16/slac-r-773.pdf;
    Retrieved on: Nov. 20, 2018
  22. G. Battistoni et al., “The FLUKA code: Description and benchmarking,” in Proc. Hadronic Shower Simulation Workshop, Fermilab, Chicago, USA, 2006, pp. 31 – 49.


Aleksandra Sokić, Luka Perazić, Ivan Knežević

Pages: 42–46

DOI: 10.21175/RadProc.2018.09

In the Public Company Nuclear Facilities of Serbia, the measurement of the operational dosimetric quantity, ambient dose equivalent H*(10), is continuously carried out at measurement points in the surrounding of the radioactive waste storage facilities (hangars H1, H2 and H3) and old reactor buildings (RA and RB), located at Vinca site in Belgrade. For that purpose, two different types of passive dosimeters are used: thermoluminescent (TL) high sensitivity dosimeters (LiF:Mg,Cu,P) and optically stimulated luminescence (OSL) dosimeters (Al2O3). The principle of radiation interaction with both types of material is very similar, and the main difference is reflected in the method of detecting the light which is in relation to the dose in the dosimeter. The measurement of the ambient dose equivalent is performed at 34 measuring points in order to monitor the level of radiation exposure in the vicinity of the mentioned facilities. The paper shows the results of the measurements in the period from January to December of 2016. TL and OSL dosimeters were used and read once a month at the same time under the same measurement conditions. The aim of this paper is to present the comparative results of the ambient dose equivalent measurements using TL and OSL dosimeters and compare them with the measurement results of the reference instrument for measuring dose rate (Atomtex AT6101C spectrometer) at the same measuring points. It was found that the differences among the measurement results using different dosimeter types were satisfactory, with a maximum deviation of 35%. The results also show that there is no significant increase in the level of radiation exposure, which is of particular importance to the environment and the population around nuclear facilities in Serbia.
  1. The 2007 Recommendations of the International Commission on Radiological Protection, ICRP Publication 103, ICRP, Vienna, Austria, 2007.
    Retrieved from: http://www.icrp.org/docs/ICRP_Publication_103-Annals_of_the_ICRP_37(2-4)-Free_extract.pdf;
    Retrieved on: Jun. 23, 2018
  2. Народна Скупштина Републике Србије. (8.12.2018). Закон о радијационој и нуклеарној сигурности и безбедности. (National Assembly of the Republic of Serbia. (Dec. 8, 2018). Law on radiational and nuclear safety and security.)
    Retrieved from: http://www.srbatom.gov.rs/srbatom/doc/vazeca_akta/ZAKON%20ParagrafLex%20CIR.pdf;
    Retrieved on: Nov. 24, 2018
  3. Влада Републике Србије. (18.11.2011) Правилник о границама излагања јонизујућим зрачењима и мерењима ради процене нивоа излагања јонизујућим зрачењима. (Government of the Republic of Serbia. (Nov. 18, 2011). Rulebook on Limits of Exposure to Ionizing Radiation and Measurements for Assessment if the Exposure Levels.)
    Retrieved from: http://www.srbatom.gov.rs/srbatom/doc/vazeca_akta/Pravilnik%20o%20granicama%20izlaganja_50_2018.pdf;
    Retrieved on: Nov. 24, 2017
  4. C. M. Sunta, Unraveling Thermoluminescence, Mumbai, India:Springer India, 2015.
    DOI: 10.1007/978-81-322-1940-8
  5. L. Botter-Jensen, S. McKeeverm A. G. Wintle, Optically Stimulated Luminescence Dosimetry, Amsterdam, Netherlands: Elsevier Science B.V., 2003.
  6. AOMTEX official webpage, ATOMTEX, Minsk, Belarus, 2018.
    Retrieved from: http://atomtex.com/en;
    Retrieved on: Jun. 13, 2018
  7. V. Ramzaev et al., “A backpack γ-spectrometer for measurements of ambient dose equivalent rate, *H˙ (10), from 137Cs and from naturally occurring radiation: The importance of operator related attenuation,” Rad. Meas., vol. 107, pp. 14 – 22, Dec. 2017.
    DOI: 10.1016/j/radmeas.2017.10.002
  8. R. Casanovas, E. Prieto, M. Salvado, “Calculation of the ambient dose equivalent H*(10) from gamma-ray spectra obtained with scintillation detectors,” Appl. Radiat. Isot., vol. 118, pp. 154 – 159, Dec. 2016.
    DOI: 10.1016/j.apradiso.2016.09.001
    PMid: 27640176
  9. P. Olko et al., “Applicarion od MCP-N (LiF:Mg, Cu, P) TL Detectors in Monitoring Environmental Radiation,” Nucl. Technol. Radiat. Prot.,vol. 19, no. 1, pp. 20 – 25, Jan. 2004.
    DOI: 10.2298/NTRP0401020O
  10. M. Budzanowski, P. Olko, E. Ryba, U. Woznicka, “A System for Rapid Large-area Monitoring of Gamma-dose Rates in the Environment Based on MCP-N (LiF:Mg, Cu, P) TL Detectors,” Radiat. Prot. Dosim.,vol. 101, no. 1-4, pp. 205 – 209, Aug. 2002.
    DOI: 10.1093/oxfordjournals.rpd.a005968
    PMid: 12382736
  11. D. Imatoukene, F. Abdelaziz, M. Mezaguer. Z. Lounis-Mokrani, “Development of new system for environmental monitoring based on Al2O3:C detectors,” Radiat. Meas.,vol. 43, no. 2-6, pp. 668 – 671, Feb-Jun. 2008.
    DOI: 10.1016/j.radmeas.2008.01.008
  12. Mirion Technologies official webpage, Mirion Technologies, San Ramon (CA), USA, 2018.
    Retrieved from: https://www.mirion.com;
    Retrieved on: Jun. 14, 2018
  13. Landauer official webpage, Landauer, Glenwood (IL), USA, 2018.
    Retrieved from: https://www.landauer.com;
    Retrieved on: Jun. 14, 2018
  14. European Commission. (Oct. 2009). Radiation Protection No 160 Technical Recommendations for Monitoring Individuals Occupationally Exposed to External Radiation.
    Retrieved from: https://ec.europa.eu/energy/sites/ener/files/documents/160.pdf;
    Retrieved on: Jun. 14, 2018
  15. Radiation protection instrumentation – Passive integrating dosimetry systems for environmental and personal monitoring of photon and beta radiation, IEC 62387:2012, EURADOS, 2012.
    Retrieved from: http://www.eurados.org/-/media/Files/Eurados/actions/IC2015ext/07_Stadtmann_IEC_62387.pdf?la=en&hash=810E5 CD9FD323D2CCA7B0E35ED31823473BC1F19;
    Retrieved on: Jun. 14, 2018

Radiation Protection


A.G. Volkovich, Iu.N. Simirskii, A.V. Stepanov, S.V. Smirnov, A.M. Safronov, I.A. Semin, V.E. Stepanov

Pages: 47–51

DOI: 10.21175/RadProc.2018.10

The specialists of NRC “Kurchatov Institute” have conducted the dismantling of the MR multiloop research reactor and RFT reactor. The technical start-up of the 20 MW capacity experimental graphite water cooling reactor (RFT) started in 1952. The reactor was shut down 10 years after the working period. The fuel was removed and the reactor was partially dismantled. The ventilation system and water cleanup system of the RFT reactor were located in a separate building. The upper part of the reactor vent stack was dismantled in the early 60’s. The water cleanup system, which consists of 6 stainless steel tanks (4 – Ø1.5m, h=5m; 2 – Ø3m, h=5m) located around the base reactor vent stack, was mothballed. To plan the dismantling work, a radiation and video survey of the water cleanup system and the reactor vent stack was carried out. For this purpose, holes were drilled in the upper ceiling of premises with the water cleanup system and at the top of vent stack. Through these holes video recording and measurement of the exposure dose rate distribution were carried out. The measurement of the exposure dose rate distribution along the height of vent stack was also carried out. Based on the result of these surveys, the measurements of distribution of activity from radioactive waste along the height of the tank were carried out. The collimated spectrometric system on the basis of a semiconductor detector CdZnTe (volume of a crystal of 60mm3) was used. The measurements showed that the distribution of activity from radioactive waste along the height of the tank was non uniform. To measure the distribution of the contamination of the inner surface vent stack we used the spectrometric system with semiconductor detector CdZnTe (volume of a crystal of 500mm3) with circular collimator. The results of measurements are presented and discussed. The results of the survey will be used for planning the dismantling work.
  1. V. G. Volkov, Yu. A. Zvercov, V. I. Kolyadin et al., “Preparations for decommissioning the MR research reactor at the Russian Science Center Kurchatov institute,” Atomic Energy., vol. 104, no. 5, pp. 335 – 341, May 2008.
    DOI: 10.1007/s10512-008-9037-6
  2. V. E. Stepanov, V. N. Potapov, S. V. Smirnov, A. S. Danilovich “Radiological examination of MR reactor rooms using a remote-controlled spectrometric scanning system,” Atomic Energy., vol. 113, no. 2, pp. 125 – 129, Dec. 2012.
    DOI: 10.1007/s10512-012-9605-7
  3. A. G. Volkovich, O. P. Ivanov, A. V. Lemus et al, “Particularities of the Dismantling of the Intra-Vessel Structures of the RFT Reactor,” Atomic Energy., vol. 121, no. 5, pp. 377 – 382, Mar. 2017.
    DOI: 10.1007/s10512-017-0215-2
  4. I. Simirskii et al., “Particularities of the Dismantling of the Intra-Vessel Structures of the RFT Reactor,” in Proc. 43rd Annual Waste Management Conference (WM2017), Phoenix (AZ), USA, 2017.
    DOI: 10.1007/s10512-017-0215-2
  5. A. Stepanov et al., “CdZnTe Detector Using for Characterization MR Water Cleanup System before Dismantling,” in Proc. 43rd Annual Waste Management Conference (WM2017 Phoenix (AZ), USA, 2017.
    Retrieved from: https://www.researchgate.net/publication/315066624_CdZnTe_Detector_Using_for_Characterization_MR_Water_Clean up_System_before_Dismantling;
    Retrieved on: Aug. 13, 2018
  6. V. E. Stepanov, A. G. Volkovich, V. N. Potapov et al., “The CdZnTe Detector with Slit Collimator for Measure Distribution of the Specific Activity Radionuclide in the Ground,” in Proc. Int. Conf. Advanced Measurement Methods and their Applications (ANIMMA17), Liege, Belgium, 2017.
    Retrieved from: https://www.researchgate.net/publication/322360097_The_CdZnTe_Detector_with_Slit_Collimator_for_Measure_Distri bution_of_the_Specific_Activity_Radionuclide_in_the_Ground;
    Retrieved on: Aug. 13, 2018
  7. V. E. Stepanov, V. N. Potapov, O. P. Ivanov, “The development of non destructive remote measurement method of concrete contamination,” in Proc. 15th Int. Conf. Environmental Remediation and Radioactive Waste Management (ASME 2013), Brussels, Belgium, 2013, p. V002T03A009.
    DOI: 10.1115/ICEM2013-96047


Maja Grbić, Aleksandar Pavlović

Pages: 52–57

DOI: 10.21175/RadProc.2018.11

The paper presents the methodology for determining the area in the vicinity of overhead power lines where the levels of non-ionizing radiation are significant in the context of current regulations referring to the protection of the general public in the Republic of Serbia. A brief review of Serbian legislation on protection of the general public from power frequency electromagnetic fields is given. The zones of influence of 110 kV, 220 kV and 400 kV transmission overhead power lines are determined by calculations. The configurations of power lines which result in the widest zone of influence are analyzed for each voltage level. The influence of phase conductor heights on the width of the zone is also considered. Determining the width of the zone of influence is very important for planning the construction of new power lines near residential areas, as well as for the construction of residential buildings near existing lines. It is also significant when it is necessary to determine the locations in the vicinity of overhead power lines where more detailed testing of non-ionizing radiation should be performed by measurements.
  1. The Council of the European Union. (Jul. 12, 1999). (1999/519/EC) Council recommendation of 12 July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz).
    Retrieved from: https://publications.europa.eu/en/publication-detail/-/publication/9509b04f-1df0-4221-bfa2-c7af77975556/language-en;
    Retrieved on: Jul. 2, 2018
  2. P. Vecchia et al., “ICNIRP Guidelines for limiting exposure to time‐varying electric and magnetic fields (1 Hz – 100 kHz),” Health Phys., vol. 99, no. 6, pp. 818 – 836, Dec. 2010.
    DOI: 10.1097/HP.0b013e3181f06c86
    PMid: 21068601
  3. Влада Републике Србије. (15.5.2009). Сл. Гласник 36/2009 Закон о заштити од нејонизујућих зрачења. (Government of the Republic of Serbia. (May 15, 2009). Official Gazzete 36/2009 Law on protection from non ionizing radiation.)
    Retrieved from: https://www.paragraf.rs/propisi/zakon_o_zastiti_od_nejonizujucih_zracenja.html;
    Retrieved on: Jul. 3, 2018
  4. Министарство животне средине и просторног планирања. (15.5.2009). Правилник о границама излагања нејонизујућим зрачењима. (Ministry of environmental protection and spatial planning. (May 15, 2009) Rulebook on limitations of exposure to non ionizing radiation.)
    Retrieved from: http://www.sepa.gov.rs/download/strano/pravilnik5.pdf;
    Retrieved on: Jul. 3, 2018
  5. Министарство животне средине и просторног планирања. (16.12.2009). Правилник о изворима нејонизујућих зрачења од посебног интереса, врстама извора, начину и периоду њиховог испитивања. (Ministry of environmental protection and spatial planning. (Dec. 16, 2009). Rulebook on sources of non ionizing radiation of special interest, types of sources, manner and period of their examination.)
    Retrieved from: http://www.sepa.gov.rs/download/strano/pravilnik1.pdf;
    Retrieved on: Jul. 3, 2018
  6. Мере за ограничење електричног и магнетског поља,студија бр. 3414017,Електротехнички институт „Никола Тесла”, Београд, Србија,2014.(Techniques for limiting the levels of electric and magnetic field, study no. 3414017, Nikola Tesla Electrical Engineering Institute, Belgrade, Serbia, 2014.)
  7. Electric and magnetic field levels generated by AC power systems – Measurement procedures with regard to public exposure, EN 62110:2009, Aug. 38, 2009.
  8. “Electric and magnetic fields,” in EPRI AC transmission line reference book – 200 kV and above,3rd ed., Palo Alto (CA), USA: EPRI, 2005, ch. 7, pp. 7.1-7.118.
    Retrieved from: https://www.scribd.com/document/332960172/EPRI-AC-Transmission-Line-Reference-Book-200-kV-and-above-3rd-Ed-2005-pdf;
    Retrieved on: Jul. 2, 2018
  9. Evaluation techniques and working procedures for compliance with exposure limits of network operator personnel to power-frequency electromagnetic fields, K.90 (07/2018), Jul. 14, 2018.
  10. G. Lucca, “Magnetic field produced by power lines with complex geometry,” Eur. T. Electr. Power., vol. 21, no. 1, pp. 52 – 58, Jan. 2011.
    DOI: 10.1002/etep.411
  11. A. Z. El Dein, “Calculation of the electric field around the tower of the overhead transmission lines,” IEEE T. Power. Deliver., vol. 29, no. 2, pp. 899 – 907, Apr. 2014.
    DOI: 10.1109/TPWRD.2013.2273500
  12. A. Z. El Dein, “Parameters affecting the charge distribution along overhead transmission lines’ conductors and their resulting electric field,” Electric Power Syst. Res., vol. 108, pp. 198 – 210, Mar. 2014.
    DOI: 10.1016/j.epsr.2013.11.011
  13. J. C. Salari, A. Mpalantinos, J. I. Silva, “Comparative analysis of 2- and 3-D methods for computing electric and magnetic fields generated by overhead transmission lines,” IEEE T. Power. Deliver., vol. 24, no. 1, pp. 338 – 344, Jan. 2009.
    DOI: 10.1109/TPWRD.2008.923409
  14. T. Modrić, S. Vujević, D. Lovrić, “3D computation of the power lines magnetic field,” Prog. Electromagn. Res., vol. 41, pp. 1 – 9, 2015.
    DOI: 10.2528/PIERM14122301
  15. T. Modrić, S. Vujević, “Computation of the electric field in the vicinity of overhead power line towers,” Electric Power Syst. Res., vol. 135, pp. 68 – 76, Jun. 2016.
    DOI: 10.1016/j.epsr.2016.03.004
  16. Дозвољене струје фазних проводника на далеководима, Техничко упутство ТУ-ДВ-04, верзија 2, ЈП „Електромрежа Србије”, Београд, Србија, 2011. (Allowed current values of phase conductors in transmission lines, Technical Manual ТУ-ДВ-04, version 2, SOE Elektromreža Srbije, Belgrade, Serbia, 2011.)
  17. Влада Савезне Републике Југославија. (1992). Правилник о техничким нормативима за изградњу надземних електроенергетских водова називног напона од 1 kV до 400 kV. (Government of the Federal Republic of Yugoslavia. (1992). Rulebook on technical norms for building of overground electric transmission lines of the nominal voltage of 1 kV to 400 kV.)
    Retrieved from: http://www.vladars.net/sr-SP-Cyrl/Vlada/Ministarstva/mper/std/Documents/3.Pravilnik%20o%20%20teh.%20norm.za %20izgrd.%20nadzemnih%20el.%20vodova%20naz.%20napons%201kv%20do%20400kv%20SL.L.%20SFRJ%2065-88.pdf;
    Retrieved on: Jul. 3, 2018


Maja Grbić, Aleksandar Pavlović

Pages: 58–62

DOI: 10.21175/RadProc.2018.12

In this paper, the operator proximity effect on the measurement results of the electric field strength in the vicinity of overhead power lines is analyzed. The operator proximity effect depends on the distance between the operator and the probe for measuring the electric field strength, as well as on the height at which the probe is placed. The paper presents the results of the electric field strength measurements performed in the vicinity of a 220 kV overhead power line in order to quantify the influence of the proximity of the operator. The measurements were carried out by using a cube-shaped isotropic probe. During the measurements, the probe was placed on a wooden tripod and connected to the electromagnetic field analyzer by an optical cable. The measurements were performed at the heights of 1 m, 1.5 m and 1.7 m. The distance between the operator and the measuring probe during these measurements was gradually increased from 1 m to 10 m. The obtained results are analyzed in detail in this paper. These results can be used for evaluating the electric field strength measurement uncertainty. The significance of these results also lies in demonstrating the manner in which the operator’s influence on the measured field can be reduced to an acceptable level.
  1. J. Di Placido et al., “Analysis of the proximity effects in electric field measurements”, IEEE Trans. Power App. Syst., vol. PAS–97, no. 6, pp. 2167 – 2177, Nov-Dec. 1978.
    DOI: 10.1109/TPAS.1978.354720
  2. Technical guide for measurement of low frequency electric and magnetic fields near overhead power lines, WG C4.203, CIGRE, Apr. 2009.
  3. Measurement of DC magnetic, AC magnetic and AC electric fields from 1 Hz to 100 kHz with regard to exposure of human beings – Part 1: Requirements for measuring instruments, EN 61786-1:2014, Jul. 31, 2014.
  4. Measurement of DC magnetic, AC magnetic and AC electric fields from 1 Hz to 100 kHz with regard to exposure of human beings – Part 2: Basic standard for measurements, IEC 61786-2:2014, Dec. 11, 2014.
  5. Electric and magnetic field levels generated by AC power systems – measurement procedures with regard to public exposure, EN 62110:2009, Aug. 31, 2009.
  6. IEEE standard procedures for measurement of power frequency electric and magnetic fields from AC power lines, IEEE 644-1994, Dec. 13, 1994.


Stevan Musicki, Dejan Vasovic, Srdjan Markovic

Pages: 63–67

DOI: 10.21175/RadProc.2018.13

The concept of CBRN (chemical, biological, radiological, nuclear) defence is a highly complex phenomenon and a scientific discipline within both the social and technical-technological sciences. CBRN defence has multiple meanings. In the most general sense, it refers to absence/elimination or minimization of threats, i.e. pressures that can threaten people, property, and the environment. Effective and efficient CBRN defence activities can be seen from the perspective of civil structures or armed forces. In this sense, the organizational structure of the armed forces of any country represents a dynamic system which, within the wider community, operates and exists under specific conditions and circumstances. Starting from its basic purposes, the regular armed forces of any state do not have unknowns regarding the rules and their core roles. However, the complex structure and the interdependence of different organizational structures within the country and within the armed forces have an impact on the implementation of measures in the field of CBRN defence and management of risk both in war and peacetime. The aim of this paper is to present the structural organization, resources and tasks of the Serbian armed forces (SAF) within the field of CBRN defence.
  1. Народна скупштина Републике Србије. (18.11.2011). Сл. гласник 86/2011 Национална стратегија заштите и спасавања у ванредним ситуацијама. (National Assembly of the Republic of Serbia. (Nov. 18, 2011). Official Gazette 86/2011 National strategy for protection and rescue procedures in emergency situations.)
    Retrieved from: http://arhiva.mup.gov.rs/cms_lat/sadrzaj.nsf/Nacionalna_strategija_zastite_i_spasavanja_u_vanrednim_situacijama_l at.pdf;
    Retrieved on: Sep. 15, 2018
  2. Народна скупштина Републике Србије. (01.04.2009). Стратегија националне безбедности Републике Србије. (Ministry of Defence of Republic of Serbia. (Apr. 1, 2009). National security strategy of the Republic of Serbia.)
    Retrieved from: http://www.mod.gov.rs/multimedia/file/staticki_sadrzaj/dokumenta/strategije/Strategija%20nacionalne%20bezbednosti %20Republike%20Srbije.pdf;
    Retrieved on: Sep. 30, 2018
  3. Народна скупштина Републике Србије. (6.10.2012). Сл. гласник 93/2012 Закон о ванредним ситуацијама. (National Assembly of the Republic of Serbia. (Oct. 6, 2012). Official Gazette 93/2012 Law on emergency situations.)
    Retrieved from: http://prezentacije.mup.gov.rs/svs/html/Zakon%20o%20VS.pdf;
    Retrieved on: Sep. 15, 2018
  4. Народна скупштина Републике Србије. (25.9.2012). Закон о ванредним ситуацијама. (National Assembly of the Republic of Serbia. (Sep. 25, 2012) Law on emergency situations.)
    Retrieved from: http://prezentacije.mup.gov.rs/svs/html/Zakon%20o%20VS.pdf;
    Retrieved on: May 12, 2018
  5. Народна скупштина Републике Србије. (28.09.2012). Закон о заштити од јонизујућег зрачења и нуклеарној сигурности. (National Assembly of the Republic of Serbia. (Sep. 28. 2012). Law on the ionizing radiation protection and nuclear safety.)
    Retrieved from: https://www.paragraf.rs/propisi/zakon_o_zastiti_od_jonizujucih_zracenja_i_o_nuklearnoj_sigurnosti.html;
    Retrieved on: Sep. 15, 2018
  6. Народна скупштина Републике Србије. (10.05.2018). Закон о одбрани. (National Assembly of the Republic of Serbia. (May 10. 2018). Law on defense.)
    Retrieved from: https://www.paragraf.rs/propisi/zakon_o_odbrani.html;
    Retrieved on: Sep. 15, 2018
  7. S. Mušicki, V. Nikolić, D. Vasović, “Resource protection - the Serbian Army experience,” in Proc. VI International Symposium Engineering Management and Competitiveness (EMC 2016), Kotor, Montenegro, 2016, pp. 110 – 113.
    Retrieved from: http://www.tfzr.uns.ac.rs/emc/pastEMCs.aspx;
    Retrieved on: May 20, 2018
  8. S. Mušicki, V. Nikolić, D. Vasović, “Safety, security, hazard and risk – a conceptual approach,” in Proc. 7th DQM International Conference Life Cycle Engineering and Management (ICDQM-2016), Prijevor, Serbia, 2016, pp. 396 – 401.
  9. D. Vasović, J. Malenović Nikolić, G. Janacković, “A quick glance at disaster risk reduction from different perspectives,” in Proc. Int. Conf. Life Cycle Engineering and Management (ICDQM-2016), Prijevor, Serbia, 2016, pp. 193 – 200.
  10. S. Mušicki, “Integrative model or resource protection improvement in MoD and SAF,” Ph.D. dissertation, University of Defence, Military Academy, Belgrade, Serbia, 2016.
  11. 246. батаљон АБХО, Војска Србије, Београд, Србија, 2018.(246th CBRN battalion of the Serbian Army, Serbian Armed forces, Belgrade, Serbia, 2018.)
    Retrieved from: http://www.vs.rs/sr_cyr/jedinice/vojska-srbije/kopnena-vojska/246-bataljon-abho;
    Retrieved on: Jun. 10, 2018
  12. D. Indjić, “Possibility of the development of Serbian protection system of chemical accident,” Mil. Tech. Cour., vol. 60, no. 4, pp. 133 – 146, 2012.
    Retrieved from: http://www.vtg.mod.gov.rs/archive/2012/military-technical-courier-4-2012.pdf;
    Retrieved on: Jun. 10, 2018
  13. D. Baker et al., Guidebook to Decision-Making Methods. Department of Energy, Washington (DC), USA, 2002, pp. 2 – 5.
    Retrieved from: https://www.researchgate.net/publication/255621095_Guidebook_to_Decision-Making_Methods;
    Retrieved on: Jun. 10, 2018
  14. Народна скупштина Републике Србије. (10.05.2018). Закон о Војсци Србије. (National Assembly of the Republic of Serbia. (May 10, 2018). Law on Serbian Armed Forces).
    Retrieved from: https://www.paragraf.rs/propisi/zakon_o_vojsci_srbije.html;
    Retrieved on: Sep. 15, 2018


Dejan Vasovic, Stevan Musicki, Sladjan Hristov

Pages: 68–72

DOI: 10.21175/RadProc.2018.14

Nuclear and chemical accidents lead to endangering the health of citizens and the environment due to contamination by radiological and chemical contaminants and consequently cause security risks for the population and material goods. Decontamination related to CBRN (chemical, biological, radiological, nuclear) events represents a set of processes and activities aimed at total or partial removal or neutralization of radiological, chemical, and biological contamination caused by an intended or non-intended threat, thereby reducing the risk of exposure to the people or the environment up to the permissible levels. The primary and ultimate goal of decontamination is the complete elimination of radioactive contaminants or the minimization of contamination levels of chemical and biological contaminants. The aim of this paper is to demonstrate the relevance of CBRN decontamination observed from multiple perspectives: the environmental resources protection standpoint, the society wellbeing standpoint, and the operative personnel and experience-knowledge standpoint to engage them in the most effective manner.
  1. N. Ivanova, S. Ivanova, “Radiation incident in “Polimeri” Devnya, actions and safety measures: a case study,” Ecology & Safety, vol. 10, pp. 515 – 523, 2016.
    Retrieved from: https://www.scientific-publications.net/get/1000017/1482509635891347.pdf;
    Retrieved on: Jun. 13, 2018
  2. Categorization of Radioactive Sources, Safety Guide No. RS-G-1.9, IAEA, Vienna, Austria, 2005.
    Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1227_web.pdf;
    Retrieved on: Jun. 13, 2018
  3. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards,General Safety Requirements, No. GSR Part 3, IAEA, Vienna, Austria, 2014.
    Retrieved from: https://www-pub.iaea.org/MTCD/publications/PDF/Pub1578_web-57265295.pdf;
    Retrieved on: Jun. 11, 2018
  4. Manual for the public health management of chemical incidents, WHO, Geneva, Switzerland, 2009.
    Retrieved from: http://apps.who.int/iris/bitstream/handle/10665/44127/9789241598149_eng.pdf;jsessionid=31019957AADF5FE8CAE88EE 8D7544783?sequence=1;
    Retrieved on: Jun. 11, 2018
  5. Public health response to biological and chemical weapons, WHO guidance, WHO, Geneva, Switzerland, 2004.
    Retrieved from: https://www.who.int/csr/delibepidemics/cover.pdf?ua=1;
    Retrieved on: Jun. 11, 2018
  6. Д. Васовић, “Хибридни модел управљања капацитетом животне средине,” докторска дисертација, Универзитет у Нишу, Факултет заштите на раду, Ниш, Србија, 2016. (D. Vasovic, “Hybrid model of environmental capacity management,” Ph.D. dissertation, University of Niš, Faculty of Occupational Safety, Niš, Serbia, 2016.)
    Retrieved from: http://www.znrfak.ni.ac.rs/SERBIAN/013-OGLASENI-DOKUMENTI/DOKTORSKE%20DISERTACIJE/Dejan%20Vasovic/Dis_UNI_ Dejan_M_Vasovic_2016%20sa%20napomenom.pdf;
    Retrieved on: Sep. 30, 2018
  7. Народна скупштина Републике Србије. (18.11.2011). Национална стратегија заштите и спасавања у ванредним ситуацијама. (National Assembly of the Republic of Serbia. (Nov. 18, 2011). National strategy for protection and rescue procedures in emergency situations.)
    Retrieved from: http://arhiva.mup.gov.rs/cms_lat/sadrzaj.nsf/Nacionalna_strategija_zastite_i_spasavanja_u_vanrednim_situacijama_la t.pdf;
    Retrieved on: Sep. 15, 2018
  8. Мистарство одбране Републике Србије. (01.04.2009). Стратегија националне безбедности Републике Србије. (Ministry of Defence of Republic of Serbia. (Apr. 1, 2009). National security strategy of the Republic of Serbia.)
    Retrieved from: http://www.mod.gov.rs/multimedia/file/staticki_sadrzaj/dokumenta/strategije/Strategija%20nacionalne%20bezbednosti %20Republike%20Srbije.pdf;
    Retrieved on: Sep. 30, 2018
  9. Народна скупштина Републике Србије. (6.10.2012). Закон о ванредним ситуацијама. (National Assembly of the Republic of Serbia. (Oct. 6, 2012). Law on emergency situations.)
    Retrieved from: http://prezentacije.mup.gov.rs/svs/html/Zakon%20o%20VS.pdf;
    Retrieved on: Sep. 15, 2018
  10. Народна скупштина Републике Србије. (28.09.2012). Закон о заштити од јонизујућег зрачења и нуклеарној сигурности. (National Assembly of the Republic of Serbia. (Sep. 28. 2012). Law on the ionizing radiation protection and nuclear safety.)
    Retrieved from: https://www.paragraf.rs/propisi/zakon_o_zastiti_od_jonizujucih_zracenja_i_o_nuklearnoj_sigurnosti.html;
    Retrieved on: Sep. 15, 2018
  11. Народна скупштина Републике Србије. (10.05.2018). Закон о одбрани. (National Assembly of the Republic of Serbia. (May 10. 2018). Law on defense.)
    Retrieved from: https://www.paragraf.rs/propisi/zakon_o_odbrani.html;
    Retrieved on: Sep. 15, 2018
  12. Народна скупштина Републике Србије. (10.05.2018). Закон о Војсци Србије. (National Assembly of the Republic of Serbia. (May 10. 2018). Law on Serbian Armed Forces.)
    Retrieved from: https://www.paragraf.rs/propisi/zakon_o_vojsci_srbije.html;
    Retrieved on: Sep. 15, 2018
  13. BM Országos Katasztrófavédelmi Foigazgatói. (24.1.2017). Intézkedés a Katasztrófavédelmi Muveleti Szolgálat, a Katasztrófavédelmi Mobil Labor, valamint a Katasztrófavédelmi Sugárfelderíto Egység tevékenységének szabályozásáról. (National Directorate General for Disaster Management, Ministry of the Interior. (Jan. 24, 2017). Rule No. 4/2017 on issuing the Operational Regulations and Methodological Guide of the Disaster Management ‘s CBRN Units.)


Esmeralda Vataj, Uarda Gjoka, Fatos Ylli, Blerina Papajani

Pages: 73–76

DOI: 10.21175/RadProc.2018.15

Nondestructive Testing (NDT) is a non-invasive method based on physical principles used to evaluate the integrity and characteristics of materials. Its measurement methodology covers a wide range of applications of materials and structures that relate to the entire life cycle, from manufacture to use and retirement. Radiography is one of the most important and widely used NDT methods for volumetric examination. In general, Radiography Testing (RT) is a method of inspecting materials for hidden flaws by using the ability of short wavelength electromagnetic radiation (high energy photons) to penetrate various materials. The intensity of radiation that penetrates and passes through the material is captured by a radiation sensitive film. This study presents the evaluation of the dose rate field in and around the radiation beam for MHF 200D X-ray tube model, using a large interval of voltage (20 to 200 kV) and current (0.5 to 8 mA). We controlled the variables that represent the essential characteristics of beam radiation quality, such as voltage (kV), and determined the Half-Value Layer (HVL) for different values of voltage and current.
  1. Radiation protection and safety in industrial radiography, Safety Report Series No. 13, IAEA, Vienna, Austria, 1999.
    Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/P066_scr.pdf;
    Retrieved on: Apr. 11, 2018
  2. Radiation safety in industrial radiography, Specific Safety Guide No. SSG-11, IAEA, Vienna, Austria.
    Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1466_web.pdf;
    Retrieved on: Apr. 11, 2018
  3. Ministria e Shëndetësisë. (18.6.2014). Nr 404 Prot për miratimin e rregullores ”për rregullat bazë të instalimeve radiologjike në mjekësi”. (Ministra of health. (Jun. 18, 2014). No. 404 on the approval of the regulation “On basic rules of radiological installations in medicine”.)
    Retrieved from: http://www.ishp.gov.al/wp-content/uploads/2017/11/Rr.404-dt-18.06.2014-Per-rregullat-baze-te-instalimeve-radiologjike-ne-mjekesi.docx;
    Retrieved on: Apr. 11, 2018
  4. Safety Procedures for the Installation, Use and Control of X-ray Equipment in Large Medical Radiological Facilities, Safety Code 35, Government of Canada, Ottawa, Canada, 2008.
    Retrieved from: https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/radiation/ safety-code-35-safety-procedures-installation-use-control-equipment-large-medical-radiological-facilities-safety-code.html#ack;
    Retrieved on: Apr. 11, 2018
  5. Criteria for Acceptability of Medical Radiological Equipment used in Diagnostic Radiology, Nuclear Medicine and Radiotherapy, Radiation Protection N° 162, European Commission, Brussels, Belgium, 2012.
    Retrieved from: https://ec.europa.eu/energy/sites/ener/files/documents/162.pdf;
    Retrieved on: Apr. 13, 2018
  6. Industrial Radiography, Image forming techniques, General Electric, Boston (MA), USA, 2008.
    Retrieved from: https://www.gemeasurement.com/sites/gemc.dev/files/industrial_radiography_image_forming_techniques_english_4.pdf;
    Retrieved on: Apr. 13, 2018
  7. Gilardoni S.p.A. Instruction for Use of MHF Code 05173201&05173202 & 05173211, Z.1666 Rev. 2 07/2004, Gilardoni S.p.A, Milan, Italy, 2004.



Manjola Shyti, Irma Bërdufi, Florinda Cfarku, Gerti Xhixha

Pages: 77–80

DOI: 10.21175/RadProc.2018.16

Terrestrial gamma radiation levels are significantly affected by the radionuclides that are present in the soil, which in turn can be used for the assessment of the terrestrial gamma dose rate. This study is important because the employees of this institute, in addition to professional exposure, will be familiar with the average annual effective dose equivalents (AEDEs) in soils that come from this area. The main radioactive materials are the long-lived radionuclides, such as 238U, 232Th and 40K, known as NORMs (Naturally Occurring Radionuclide Materials). Natural radioactivity analysis has been done for the soil samples collected from the area of the Institute of Applied Nuclear Physics (IANP) in Tirana, Albania. The activity concentration of Radium (226Ra), Thorium (232Th) and Potassium (40K) were measured in these samples using HPGe (High Purity Germanium) detector based on low background gamma-ray counting system. From the measured activity concentration of the above three natural radionuclides, the external gamma absorbed dose rate and the annual effective dose were calculated. The obtained mean values of gamma absorbed dose rate and annual effective dose in soil samples were found to be comparable with the worldwide average as reported by United Nations Scientific Committee on the Effects of Atomic Radiation. The natural radioactivity levels in soils of IANP area had never been studied before. This study aims to determine the dose rate in order to assess the health risks from the activity concentration of the natural radionuclides as 238U, 232Th and 40K in the soil. Also, the Radium equivalent (Raeq) of the samples is calculated and compared with the similar data reported in literature. The values of the outdoor annual effective dose were in the range of 0.02 to 0.11 mSv, showing that the area of IANP was radiologically safe.
  1. Sources and Effects of Ionizing Radiation, UNSCEAR Report (A/48/46), UNSCEAR, New York (NY), USA, 1993.
    Retrieved from: http://www.unscear.org/docs/publications/1993/UNSCEAR_1993_Report.pdf;
    Retrieved on: Aug. 17, 2018
  2. Beir VII Phase 2: Health risks from exposure to low levels of ionizing radiation Washington, Rep. 11340, National Academy of Sciences, Washington (DC), USA, 2006.
    Retrieved from: http://www.philrutherford.com/Radiation_Risk/BEIR/BEIR_VII.pdf;
    Retrieved on: Aug. 17, 2018
  3. Sources and Effects of Ionizing Radiation, UNSCEAR Report (A/55/46), UNSCEAR, New York (NY), USA, 2000.
    Retrieved from: http://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Report_Vol.I.pdf;
    Retrieved on: Aug. 17, 2018
  4. Sources, Effects and Risks of Ionizing Radiation, UNSCEAR Report (A/43/45), UNSCEAR, New York (NY), USA, 1988.
    Retrieved from: http://www.unscear.org/docs/publications/1988/UNSCEAR_1988_Report.pdf;
    Retrieved on: Aug. 17, 2018
  5. L. A. Currie, “Limits for Qualitative Detection and Quantitative Determination Application to Radiochemistry,” Anal. Chem., vol. 40, no. 3, pp. 586 – 593, Mar. 1986.
    DOI: 10.1021/ac60259a007
  6. Ş. Turhan, A. Köse, A. Varinlioğlu, İ. H. Arıkan, F. Oğuz, B. Yücel, T. Özdemir, “Distribution of terrestrial and anthropogenic radionuclides in Turkish surface soil samples,” Geoderma, vol. 187-188, pp. 117 – 124, Oct. 2012.
    DOI: 10.1016/j.geoderma.2012.04.017


Vesna Radumilo, Ivan Knežević, Dalibor Arbutina

Pages: 81–84

DOI: 10.21175/RadProc.2018.17

Public Company “Nuclear Facilities of Serbia” is the only nuclear operator in Serbia. Under the radiation safety and radiation protection measures of people and environment, Public Company conducts the environmental radiation monitoring around nuclear facilities. Monitoring also includes relevant meteorological measurements at the micro-location. This paper shows the correlation between the change of ambient gamma dose rate equivalent in the air and meteorological parameters: precipitation and the relative humidity in air. All the measurements were taken at the site of a meteorological tower on 114 meters above sea level, in the vicinity of nuclear facilities. Monthly values of relative humidity of the air and intense rainfall were obtained during 2017. The analysis of this relation clearly shows the impact of the intense rain and the relative humidity of the air on the ambient gamma dose rate equivalent. Calculated Pearson's correlation coefficient shows the degree of the above-mentioned dependence.
  1. Sources and Effects of Ionizing Radiations, vol. 1, UNSCEAR Report (A/55/46), UNSCEAR, New York (NY), USA, 2000.
    Retrieved from: http://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Report_Vol.I.pdf
    Retrieved on: May 20, 2018
  2. C. R Hosler, “Meteorological effects on atmospheric concentrations of radon (Rn222), RaB(Pb214), and RaC(214Bi) near the ground,” American Meteorological Society, Feb. 1966.
    DOI: 10.1175/1520-0493(1966)094<0089:MEOACO>2.3.CO;2
  3. E. Simion, I. Mihalcea, F. Simion, C. Pacuraru, “Evaluation Model of Atmospheric Natural Radioactivity Considering Meteorological Variables,” Rev. Chim., vol. 63, no. 12, pp. 1251 – 1256, 2012.
    Retrieved from: http://revistadechimie.ro/pdf/SIMION%20E.pdf%2012%2012.pdf;
    Retrieved on: Apr. 29, 2018
  4. Vlada Republike Srbije. (28.9.2012). Sl. Glasnik br. 36/09 i br. 93/12. Zakon o zaštiti od jonizujućih zračenja i o nuklearnoj sigurnosti. (Government of the Republic of Serbia. (Sep. 28, 2012). Official Gazette no. 36/06 and no. 93/12. Law on protection from the ionizing radiation and nuclear safety.)
    Retrieved from: http://www.srbatom.gov.rs/srbatom/doc/vazeca_akta/ZAKON_O_ZASTITI_OD_JONIZUJUCIH_ZRACENJA_I_NUKLEARNOJ _SIGURNOSTI-SLGL-36-09-I-93-12-LAT.pdf;
    Retrieved on: May 15, 2018
  5. Agencija za zaštitu od jonizujućih zračenja i nuklearnu sigurnost Srbije. (Dec. 21, 2011). Br 97/11. Pravilnik o monitoringu radioaktivnosti. (Serbian Radiation Protection and Nuclear Safety Agency. (Dec. 21, 2011). No. 97/11. Rulebook on Radioactivity Monitoring.
    Retrieved from: http://www.imrs.rs/!uploads/PRAVILNIK%20O%20MONITORINGU%20RADIOAKTIVNOSTI%20(Sl.%20glasnik%20RS,%20br.%2097-2011)%20-%20LAT.pdf
    Retrieved on: May 15, 2018
  6. Guide to Meteorological Instruments and Methods of Observations, WMO-No.8, WMO, Geneva, Switzerland, 2008.
    Retrieved from: https://library.wmo.int/pmb_ged/wmo_8_en-2012.pdf
    Retrieved on: May 10, 2018
  7. J. F. Mercier et al., “Increased environmental gamma-ray dose rate during precipitation: a strong correlation with contributing air mass,” J. Environ. Radioact., vol. 100, no. 7, pp. 527 – 533, Jul. 2009.
    DOI: 10.1016/j.jenvrad.2009.03.002
    PMiD: 19403214
  8. Calibration of Radiation Protection Monitoring Instruments, IAEA SRS No. 16, IAEA, Vienna, 2000.
    Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/P074_scr.pdf;
    Retrieved on: Apr. 29, 2018
  9. V. Radumilo, I. Knežević, D. Žarković, D. Arbutina, “Korelacija radijacionih parametara i količine padavina prilikom monitoringa radioaktivnosti u okolini nuklearnih objekata,” у Zbornik radova XXIX Simpozijuma (DZZSCG, 2017), Srebrno jezero, Srbija, pp. 2017, 37-44. (V. Radumilo, I. Knežević, D. Žarković, D. Arbutina, “Correlation of radiation parameters and the level of precipitations during monitoring of radioactivity in the vicinity of nuclear facilities” in Proc 29th Symposium, Society for Radiation Protection of Serbia and Montenegro (DZZSCG, 2017), Srebrno jezero, Serbia, 2017, pp. 37 – 44.
    Retrieved from: https://mail.ipb.ac.rs/~centar3/radovi171020/2017_CN03-04_Zbornik_XXIX_Simpozijum_DZZ_SCG_2017.pdf;
    Retrieved on: May 10, 2018


Borjana Vranješ, Velibor Andrić, Mila Vranješ, Jelena Ajtić, Branislava Mitrović

Pages: 85–88

DOI: 10.21175/RadProc.2018.18

The aim of the study is the investigation of the activity concentration of 137Cs and 40K in blueberry-based products that are available on the market in the Republic of Serbia. Samples were bought in stores during September 2017 and in total, ten packaged juices, two jams, two sweets and a fresh wild blueberry were measured. The activity concentrations of 137Cs in blueberry-based juices, jams and sweets varied from <MDA to 4.1 Bq/kg, <MDA to 21 Bq/kg and 0.6 Bq/kg to 28 Bq/kg, respectively. The average activity concentration of 137Cs in fresh wild blueberry was 4.1 Bq/kg. In Serbia, the recommended activity concentration of 137Cs in juices and sweets is 15 Bq/kg and 150 Bq/kg in fresh blueberries. The tested samples of juices, jams, fresh wild blueberry and one of the sweets meet the set criteria for 137Cs while one sweets sample exceeds the limit. The activity concentrations of 40K in juices, jams and sweets varied from 3.5 to 55 Bq/kg, 13.9 to 19.2 Bq/kg and 17.2 to 227 Bq/kg, respectively. The average activity concentration of 40K in fresh wild blueberry was 32 Bq/kg. With the obtained result the annual effective dose equivalent due to ingestion of blueberry-based products for adults was calculated, and for 137Cs in blueberry-based juices, jams, sweets and fresh wild blueberry varied from 0.2 to 2.5 mSv, 2.8 mSv, 0.4 to 17.0 mSv and 2.5 mSv, respectively. The annual effective dose equivalent for 40K in blueberry-based juices, jams, sweets and fresh wild blueberry varied from 1.0 to 16.0 mSv, 1.2 mSv, 5.0 to 66.0 mSv, and 9.3 mSv, respectively.
  1. Yu. I. Bandazhevsky, “Radioactive cesium incorporation into the human or animal organism, reasons and governing factors,” in Medical and biological effects of radiocesium incorporated into the human organism, Minsk, Belarus: The Institute of Radiation Safety “BELRAD”, 2000, ch. 1, sec. 1, p. 5.
    Retrieved from: http://enfants-tchernobyl-belarus.org/extra/pdf-divers/etb-094.pdf
    Retrieved on: Nov. 15, 2018.
  2. B. Mitrović et al., “137Cs and 40K in some traditional herbal teas collected in the mountain region of Serbia,” Isotopes Environ. Health Stud., vol. 50, no. 4, pp. 538 – 545, Oct. 2014.
    DOI: 10.1080/10256016.2014.964233
    PMid: 25322769
  3. N. S. Peterson, “Cultural Competence in the Prevention and Treatment of Cancer: The Case of Blueberries in North America,” Adv. Anthropol., vol. 3, no. 2, pp. 65 – 70, May 2013.
    DOI: 10.4236/aa.2013.32009
  4. N. B. Sarap, D. J. Todorovic, M. M. Jankovic, J. D. Nikolic, M. M. Rajacic, “Determination of radiocaesium in blueberries,” in Proc. Fourth International Agronomic Symposium (Agrosym 2013), Jahorina, Bosnia and Herzegovina, 2013, pp. 781 – 785.
    Retrieved from: http://www.agrosym.rs.ba/agrosym/agrosym_2013/documents/4epnm/ep6.pdf;
    Retrieved on: Dec. 10, 2018
  5. Агенција за заштиту од јонизујућих зрачења и нуклеарну сигурност Србије. (10.5.2018). Сл. гласник бр. 36/2018 Правилник о границама садржаја радионуклида у води за пиће, животним намирницама, сточној храни, лековима, предметима опште употребе, грађевинском материјалу и другој роби која се ставља у промет. (Agency for Protection from Ionizing Radiation and Nuclear Safety of Serbia. (May, 10, 2018). Official Gazette no. 36/2018 Rulebook on limits of radionuclides content in drinking water, foodstuffs, feeding stuffs, medicines, general use products, construction materials and other goods that are put on market.)
    Retrieved from: http://www.pravno-informacioni-sistem.rs/SlGlasnikPortal/reg/viewAct/0c0ca9c4-4afa-4ede-aff9-6faeb88f184c;
    Retrieved on: May 25, 2018
  6. Agencija za zaštitu od jonizujućeg zračenja i nuklearnu sigurnost Srbije. (31.05.2011.). Sl. glasnik br. 38/2011 Pravilnik o granicama radioaktivne kontaminacije lica, radne i životne sredine i načinu sprovođenja dekontaminacije. (Agency for Protection from Ionizing Radiation and Nuclear Safety of Serbia. (May, 31 2011). Official Gazette no. 38/2011 Rulebook on limits of radioactive contamination of people, work and living environment and ways of performing decontamination.)
    Retrieved from: http://www.srbatom.gov.rs/srbatom/doc/vazeca_akta/PRAVILNIK%20O%20GRANICAMA%20RADIOAKTIVNE%20KONTAMINACIJE %20LICA,%20RADNE%20I%20ZIVOTNE%20SREDINE%20I%20NACINU%20SPROVODJENJA%20DEKONTAMINACIJE%20(Sl.%20glasnik%20RS,%20br. %2038-2011)%20-%20LAT.pdf;
    Retrieved on: Sep. 10, 2016
  7. Анкета о потрошњи домаћинства 2016, Републички завод за статистику, Београд, Србија, 2017. (Household Budget Survey 2017, Statistical office of the Republic of Serbia, Belgrade, Serbia, 2017.)
    Retrieved from: http://pod2.stat.gov.rs/ObjavljenePublikacije/G2017/pdf/G20175627.pdf;
    Retrieved on: Feb. 20, 2018
  8. A. E. Adeiji, O. O. Altatise, A. C. Nwanya, “Radionuclide concentration in some fruit juices produced and consumed in Lagos, Nigeria,” Am. J. Environ. Prot., vol. 2, no. 2, pp. 37 – 41, Apr. 2013.
    DOI: 10.11648/j.ajep.20130202.11
  9. J. Kenigsberg et al., “Exposures from consumption of forest produce,” in Proc. of the 1st international conference The radiological consequences of the Chernobyl accident (INIS-BY), Minsk, Belarus, 1996, pp. 271 – 281.
    Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/31/056/31056858.pdf?r=1&r=1;
    Retrieved on: Jan. 12, 2018


Mehmet Erdogan, Kaan Manisa, Hasan Bircan, İbrahim Çevik, Nesli Bingöldağ, Recep Biyik, Veysel Zedef

Pages: 89–93

DOI: 10.21175/RadProc.2018.19

The radiation exposure for people and all living things is inevitable. Most of these exposures are due to natural sources. Terrestrial and cosmic radiation sources are the most important contribution to these exposures which originated from the fractionation of U-238, Th-232, gamma radiation of K-40 and high-energy cosmic particles incident on the earth’s atmosphere. The main contribution to these exposures comes from terrestrial sources. Terrestrial radionuclides are found in various concentrations in the crust of the earth depending on geological conditions of the region. They also cause exposure risks externally due to their gamma-ray emissions. This study assesses the terrestrial and cosmic radiation dose rates from the naturally occurring radionuclides in the region of Niğde province of Turkey. The measurements were performed on the surface soil using NaI(Tl) scintillation type gamma-ray detector. The external annual effective doses and cancer risk for people living in the region are also calculated from such terrestrial and cosmic gamma radiation dose rates for each individual.
  1. Sources and effects of ionizing radiation, vol. 1, Annex B, UNSCEAR, New York (NY), USA, 2000, pp. 84 – 154.
    Retrieved from: http://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Report_Vol.I.pdf;
    Retrieved on: Aug. 10, 2018
  2. A. C. Demirkesen, “Quantifying geological structures of the Niğde province in central Anatolia, Turkey using SRTM DEM data,” Environ. Geol., vol. 56, no. 5, pp. 865 – 875, Jan. 2009.
    DOI: 10.1007/s00254-008-1187-2
  3. H. Baş, N. Poyraz, D. Jung, “Ulukişla-çamardi (Niğde) magmatîtlerînin petrografisi ve jeokimyasi,” Türkiye Jeoloji Bülteni, vol. 35, pp. 71 – 89, Aug. 1992. (H. Baş, N. Poyraz, D. Jung, “Petrography and geochemistry of the Ulukışla-Çamardı (Niğde) magmatites,” Geol. Bull. Turkey, vol. 35, pp. 71 – 89, Aug. 1992.)
    Retrieved from: http://www.jmo.org.tr/resimler/ekler/e2eec9ca19c0767_ek.pdf?dergi=TURKIYEJEOLOJIBULTENI;
    Retrieved on: Aug. 10, 2018
  4. RadEye™ NBR High Sensitivity Gamma Radiation Monitor, Fisher Scientific, Pittsburg (PA), USA, 2018.
    Retrieved from: https://www.fishersci.com/shop/products/thermo-scientific-radeye-nbr-high-sensitivity-gamma-radiation-monitor-radeye-nbr-high-sensitivity-gamma-radiation-monitor/19155223;
    Retrieved on: Jun. 12, 2018
  5. M. Boutillon, A. M. Perroche-Roux, “Re-evaluation of the W value for electrons in dry air,” Phys. Med. Biol., vol. 32, no. 2, pp. 213 – 219, Apr. 1987.
    DOI: 10.1088/0031-9155/32/2/005
  6. Turkish statistical institute official web page, Turkish statistical institute, Ankara, Turkey, 2018.
    Retrieved from: www.turkstat.gov.tr;
    Retrieved on: Jun. 12, 2018
  7. 1990 recommendations of the international commission on radiological protection, ICRP Publication 60, ICRP, Ottawa, Canada, 1990.
    PMid: 2053748
  8. S. Luevano-Gurrola et al., “Lifetime Effecttive Dose Assesment Based on Background Outdoor Gamma Exposure in Chihuahua City, Mexico,” Int. J. Environ. Res. Public Health, vol. 12, no. 10, pp. 12324 – 12339, Oct. 2015.
    DOI: 10.3390/ijerph121012324
    PMid: 26437425
    PMCid: PMC4626971
  9. L. Sahin et al., “Assessment of radiological hazard parameters due to natural radioactivity in soils from granite-rich regions in Kütahya province, Turkey,” Isot. Environ. Health Stud., vol. 53, no. 2, pp. 212 – 221, May 2017.
    DOI: 10.1080/10256016.2016.1207640
    PMid: 27465510
  10. Y. Kobya, H. Taskin, C. M. Yesilkanat, U. Cevik, “Evaluation of outdoor gamma dose rate and cancer risk in Artvin province, Turkey,” Hum. Ecol. Risk Assess., vol. 21, no. 8, pp. 2077 – 2085, Nov. 2015.
    DOI: 10.1080/10807039.2015.1017876
  11. M. Erdogan, K. Manisa, “Assesment of Outdoor Terrestrial Gamma Dose Rates in the Konya-Ilgın-Çavuşçu Lignite Deposit (Turkey),” Süleyman Demirel University Journal of Science, vol. 11, no. 2, pp. 89 – 93, Nov. 2016.
    Retrieved from: http://dergipark.gov.tr/download/article-file/274645;
    Retrieved on: Aug. 10, 2018
  12. A. Eslami et al., “Outdoor gamma radiation measurment in order to estimate the annual effective dose and excess lifetime cancer risk for residents of Tehran Iran,” J. Air Pollution and Health, vol. 1, no. 4, pp. 243 – 250, Dec. 2016.
    Retrieved from: http://japh.tums.ac.ir/index.php/japh/article/view/65/37;
    Retrieved on: Aug. 10, 2017
  13. A. T. Ramli, N. H. Apriantoro, H. Wagiran, “Assessment of radiation dose rates in the high terrestrial gamma radiation area of Selama district, Perak, Malaysia,” Appl. Phys. Res.,vol. 1, no. 2, pp. 45 – 52, Nov. 2009.
    DOI: 10.5539/apr.v1n2p45


Radoslava Lazarova, Ivanka Yordanova, Donka Staneva

Pages: 94–97

DOI: 10.21175/RadProc.2018.20

Bulgaria is a country which developed uranium (U) mining in the past. In the present study U content in different foodstuffs was determined in answer to public concern of possible radiological risk raised by relatively high U concentration measured in drinking waters in the regions of Haskovo and Plovdiv. Around them uranium mining was carried out on a large scale in the past (around Haskovo under the classical mining method and around Plovdiv under the method of geotechnological drilling). Vegetable (alfalfa, carrots, potatoes and tomato paste) and animal (milk and minced meat) samples were studied and radioactivity concentration (Bq.kg-1) of two natural U isotopes was determined in the following intervals: U-234 –0.004 – 1.00 and U-238 –0.004 – 0.76. Calculated natural U concentration (mg/kg) was 0.0010 – 0.0712. Results were comparable with data cited in literature for U content in foodstuffs from former U mining regions in Europe and considered not radiologically hazardous to the population.

  1. Sources and Effects of Ionizing Radiation, vol. 1, Annex A, UNSCEAR, New York (NY), 2000.
    Retrieved from: http://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Annex-A.pdf;
    Retrieved on: May 15. 2018
  2. Sources and Effects of Ionizing Radiation, Annex A, New York (NY), 1993
    Retrieved from: http://www.unscear.org/docs/publications/1993/UNSCEAR_1993_Annex-A.pdf;
    Retrieved on: Apr. 12, 2018
  3. M. L. Montes, R. C Mercader, A. Taylor, J. Runco, J. Desimoni, “Assessment of natural radioactivity levels and their relationship with soil characteristics in undisturbed soils of northeast of Buenos Aires province, Argentina,” J. Environ. Radioact., vol. 105, pp. 30 – 39, Feb. 2012.
    DOI: 10.1016/j.jenvrad.2011.09.014
    PMid: 22230019
  4. П. Георгиев, С. Грудев, “Характеристики на замърсени почви в района на ураново находище,” Годишник на МГУ, т. 46, св. ІІ, стр. 243 – 248, 2003. (P. Georgiev, S. Grudev, “Characteristics of contaminated soils in the region of uranium deposit”, J. University of Mining and Geology, Sofia, vol. 46, no 2, pp. 243 – 248, 2003.)
  5. Plans for environmental restoration of uranium mining and milling sites in Bulgaria, IAEA-TECDOC—982, IAEA, Vienna, Austria, 1997, pp. 21 – 35.
    Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/te_982_prn.pdf;
    Retrieved on: May 12, 2018
  6. Planning for environmental restoration of radioactively contaminated sites in central and eastern Europe, vol. 1, IAEA TECDOC-865, IAEA, Vienna, Austria, 1996, pp. 43 – 65.
    Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/te_0865v1.pdf;
    Retrieved on: May 12, 2018
  7. Planning for environmental restoration of radioactively contaminated sites in central and eastern Europe, vol. 1, IAEA TECDOC-865, IAEA, Vienna, Austria, 1996, pp. 43 – 63.
    Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/te_0865v1.pdf;
    Retrieved on: May 12, 2018
  8. The Council of the European Union. (Nov. 3, 1998). Council Directive 98/83/EC on the quality of water intended for human consumption.
    Retrieved from: https://eurlex.europa.eu/legalcontent/EN/TXT/?uri=CELEX:31998L0083;
    Retrieved on: Apr. 12. 2018
  9. Министерски съвет. (16.3.2001). Наредба № 9 за качеството на водата, предназначена за питейно-битови цели. (Council of Ministers. (Mar. 16, 2001). Ordinance No. 9 on the quality of the water intended for drinking and household purposes.)
    Retrieved from: https://www.wabd.bg/docs/Zakoni/NAR9.pdf;
    Retrieved on: Apr. 12, 2018
  10. G. Welford, R. Baird, “Uranium levels in human diet and biological materials,” Health Phys., vol. 13, no. 12, pp. 1321 – 1324, Dec. 1967.
    DOI: 10.1097/00004032-196712000-00005
    PMid: 6069847
  11. I. Fisenne, P. Perry, K. Decker, H. Keller, “The daily intake of 234,235,238 U, 228,230,232Th and 226,228 Ra by New York City residents,” Health Phys., vol. 53, no. 4, pp. 357 – 363, Oct. 1987.
    DOI: 10.1097/00004032-198710000-00002
    PMid: 3654223
  12. T. Nozaki, M. Itchikawa, T. Sasuga, M. Inarida, “Neutron activation analysis of uranium in human bone, drinking water and daily diet,” J. Radioanal. Nucl. Chem., vol. 6, no. 1, pp. 33 – 40, Sep. 1970.
    DOI: 10.1007/BF02513897
  13. E. Hamilton, “The concentration of uranium in man and his diet,” Health Phys., vol. 22, no. 2, pp. 149 – 153, Feb. 1972.
    DOI: 10.1097/00004032-197202000-00004
    PMid: 5067039
  14. M. Kumar, S. Prasher, S. Singh, “Uranium analysis in some food samples collected from Bathinda area of Punjab, India,” Indian J. Phys., vol. 83, no. 7, pp. 1045 – 1050, 2009.
    DOI: 10.1007/s12648-009-0066-3
  15. М. Найденов, И. Йорданова, Д. Станева, Л. Мишева, Сборник методики за определяне на алфа, бета и гама емитиращи радиоактивни изотопи в обекти от околната среда, Нациоален център за аграрни науки, София, България, 2001, стр. 25 – 29. (M. Naydenov. I. Yordanova. D. Staneva. L. Misheva, Procedures for determination of alpha- beta- and gamma-emitting radioactive isotopes in environmental samples, National Center for Agricultural Science, Sofia, Bulgaria, pp. 25 – 29, 2001.)
  16. M. Pimpl, B. Yoo, I. Yordanova, “Optimization of a radioanalytical procedure for the determination of uranium isotopes in environmental samples,” J. Radioanal. Nucl. Chem., vol. 161, no 2. pp. 437 – 441, Aug. 1992.
    DOI: 10.1007/BF02040490
  17. M. Anke, O. Seeber, O. Müller, U. Schäfer, J. Zerull, “Uranium transfer in the food chain from soil to plants, animals and man,” Chemie der Erde-Geochemistry, vol. 69, pp. 75 – 90, Feb. 2009.
    DOI: 10.1016/j.chemer.2007.12.001
  18. M. O. Neves, M. M. Abreu, V. R. Figueiredo, “Uranium in vegetable foodstuffs: should residents near the Cunha Baixa uranium mine site (Central Northern, Portugal) be concerned?” Environ. Geochem. Health, vol. 34, pp. 181 – 189, Apr. 2012.
    DOI: 10.1007/s10653-011-9428-9
  19. F. P Carvalho, J. M. Oliveira, O. Neves, M. M. Abreu, E. M. Vicente, “Soil to plant (Solanum tuberosum L.) radionuclide transfer in the vicinity of an old uranium mine,” Geochem. Explor. Environ. Anal., vol. 9. no. 3, pp. 275 – 278, Jul. 2009
    DOI: 10.1144/1467-7873/09-213
  20. E. Baratta, P. Mackill, “Determination of uranium in food and water,” J. Radioanal. Nucl. Chem., vol. 248, no. 2, pp. 473 – 475, May 2001.
    DOI: 10.1023/A:1010617200963


Željko Mihaljev, Milica Živkov-Baloš, Sandra Jakšić, Brankica Kartalović, Nenad Popov

Pages: 98–102

DOI: 10.21175/RadProc.2018.21

The naturally occurring radionuclides are the major source of radiation to which humans are exposed to. A total of 21 samples of roe deer (Capreolus capreolus) from different locations in Vojvodina were tested. The samples were prepared for measuring by microwave digestion. The content of potassium in the samples was determined using atomic absorption spectrometry (AAS) The total content of uranium and thorium were determined using inductively coupled plasma mass spectrometry (ICP-MS). The concentration of the activity of the tested radionuclides was calculated based on their specific activities. It can also be concluded that potassium-40 is the predominant natural radionuclide in urine as compared to other radionuclides and it moved in the range of 128-381 Bq/L. The results of urine analysis showed wide ranges in radionuclide activity concentrations: 18.4-231.9 mBq/L for 238U, 0.94-11.90 mBq/L for 235U and 1.03-89.02 mBq/L for 232Th.
  1. M. Dželalija, “Zračenje u prirodnom okolišu,” u Jonizirajuće zračenje u biosferi, Hrvatsk: Kemijsko-tehnološki fakultet, 2006, pog. 17, sek. 17.3, str. 42 – 45. (M. Dželalija, “Radiactivity in the environment,” in Ionizing Radiation in the Biosphere, Croatia: Faculty of Chemistry and Technology, 2006, ch. 17, sec. 17.3., pp. 42 – 45.)
    Retrieved from: http://djelatnici.unizd.hr/~mdzela/nastava/KTF.pdf;
    Retrieved on: Sep. 10, 2017
  2. M. Rajković, “Osiromašeni uranijum – Uranijum, radioaktivnost i zakonska regulative,” Hem. Ind., vol. 55, br. 4, str.167 – 182, 2001. (M. Rajković “Depleted uranium – Uranium, radioactivity and legal regulations”, Chem. Ind. vol. 55, no. 4, pp. 167 – 182, 2001.)
    Retrieved from: http://www.ache.org.rs/HI/2001/No04/rajkov.pdf;
    Retrieved on: Sep. 12, 2017
  3. D. Kisić, S. Miletić, V. Radonjić, S. Radanović, J. Filipović, “Prirodna radioaktivnost uglja i letećeg pepela u termoelektrani Nikola Tesla B,” Hem. Ind., vol. 67, br. 5, str. 729 – 738, 2013. (D. Kisić, S. Miletić, V. Radonjić, S. Radanović, J. Filipović, “Natural radioactivity of coal and flying ash in a thermal power plant Nikola Tesla B,” Chem. Ind, vol. 67, no. 5, pp. 729 – 738, 2013.)
    DOI: 10.2298/HEMIND121016120K
  4. B. Mitrović, G. Vitorović, M. Stojanović, D. Vitorović, “Radiaktivnost fosfatnih mineralnih proizvoda,” Vet. Glasnik, vol. 65, br. 1-2, str. 123 – 140, 2011. (B. Mitrović, G. Vitorović, M. Stojanović, D. Vitorović, “Radiation of phosphate mineral products,” Bull. Vet., vol. 65, no. 1-2, pp. 123 – 140, 2011.)
    Retrieved from: https://www.researchgate.net/publication/256766052_radioaktivnost_fosfatnih_mineralnih_proizvoda_radioactivity_of_phosp hate_mineral_products;
    Retrieved on: Sep. 11, 2017
  5. I. Bikit i dr, Merenje radioaktivnosti zemljišta na teritoriji AP Vojvodine u 2010. godini, Završni izveštaj o realizaciji predmeta ugovora, Univerzitet u Novom Sadu, Novi Sad, Srbija, 2010. (I. Bikit, et al., Measurement of soil radioactivity in the territory of AP Vojvodina in 2010, Final Report on realization of the contract subject, University of Novi Sad, Novi Sad, Serbia, 2010.)
    Retrieved from: https://www.scribd.com/document/354777167/Merenje-Radioaktivnosti-Zemljista-Na-Teritoriji-AP-Vojvodine-u-2010-0;
    Retrieved on: Sep. 17, 2017
  6. M. Simić, J. Kovačević, B. Radošević, V. Jović, “Prirodni kontaminanti životne sredine”, Tehnologija mesa, vol. 42, br. 1-2, str. 45 - 57, 2001. (M. Simić, J. Kovačević, B. Radošević, V. Jović, “Natural contaminants of the environment”, Meat technology, vol. 42, no. 1-2, pp. 45 - 57, 2001.)
  7. S. K. Sahoo et al., “Thorium, Uranium and Rare Elements Concentration in Weathered Japanese Soil Samples,” Prog. Nucl. Sci. Technol., vol. 1, pp. 416 – 419, 2011.
    Retrieved from: http://www.aesj.or.jp/publication/pnst001/data/416.pdf;
    Retrieved on: Sep. 17, 2017
  8. M. Beuković, Z. Popović, “Biološke karakteristike sisara,” u Lovstvo, Novi Sad, Srbija: Poljoprivredni fakultet, 2014, pog. 2, sek., str. 18 – 20. (M. Beuković, Z. Popović, “Biological characteristics of mammals,” in Hunting, Novi Sad, Serbia: Faculty of Agriculture, 2014, ch. 2, sec., pp. 18 – 20.)
    Retrieved from: http://polj.uns.ac.rs/sites/default/files/udzbenici/LOVSTVO.pdf;
    Retrieved on: Sep. 10, 2017
  9. M. Živkov Baloš et al., “The incidence of heavy metals and other toxic elements in Roe Deer (Capreolus Capreolus) Tissues,” Arch. Vet. Med., vol. 8, no. 2, pp. 3 – 10, 2015.
    Retrieved from: https://www.researchgate.net/publication/315105665_Milica_Zivkov_Balos_Zeljko_Mihaljev_Sandra_Jaksic_Nadezda_Prica_Gosp ava_Lazic_Milos_Kapetanov_Jasna_Prodanov_Radulovic_2015_The_Incidence_Of_Heavy_Metals_And_Other_Toxic_Elements_In_Roe_Deer_Capreolus;
    Retrieved on: Sep. 5, 2015
  10. Ž. Mihaljev et al., “Radioactivity of the Soil in Vojvodina (Northern Province of Serbia),” in Proc 1st Int. Sym. of Vet. Med. (ISVM2015), Vrdnik, Serbia, 2015, pp. 173 – 177.
    Retrieved from: http://niv.ns.ac.rs/Proceeding%20ISVM2015c.pdf:
    Retrieved on: May. 21, 2015
  11. Ethos one Operator manual, Milestone, Sorisole, Italy, 2005.
    Retrieved from: http://prg.ukzn.ac.za/docs/default-source/laboratory-documents/microwave-digester-(ethos-1).pdf?sfvrsn=2:
    Retrieved on: Sep. 26, 2010
  12. M. Eisenbud, “The properties of Certain Radionuclides,” in Environmental Radioactivity, New York (NY), USA: Academic Press, 1973, pp. 479 – 494.
  13. R. S. Pappas et al., “Determination of uranium-235, uranium-238 and thorium-232 in urine by magnetic sector inductively coupled plasma mass Spectrometry,” J. Anal. At. Spectrom., vol. 17, pp. 131 – 134, 2002.
    DOI: 10.1039/b108414c
  14. I. Jazbec, “Mineralne materije,” u Kliničko laboratorijska dijagnostika, Ljubljana, Slovenia: Veterinarski Fakultet, 1999, pog. 19, sek. 19.7., str. 159 – 160. (I. Jazbec, “Mineral matters,” in “Clinical laboratory diagnostics,” Ljubljana, Slovenia: Veterinary Faculty, 1999, ch. 19, sec. 19.7., pp. 159 – 160.)
  15. Ž. Mihaljev, B. Kartalović, N. Popov, S. Jakšić, M. Živkov-Baloš, “Thorium-232, Uranium-235 and Uranium-238 content in internal organs of wild birds from the area of Vojvodina,” in Book of Abstr. 8th Symposium Chemistry and Environmental Protection with international participation (ENVIROCHEM 2018),Kruševac, Serbia, 2018, pp. 191 – 192.
    Retrieved from: http://www.envirochem.rs/doc/EnviroChem_2018--Book_of_Abstracts.pdf;
    Retrieved on: Jun. 12, 2018
  16. P. Schramel, I. Wendler, P. Roth., E. Werner, “Method for determination of thorium and uranium in urine by ICP-MS,” Mikrochim. Acta, vol.126, no. 3-4, pp. 263 – 266, Sep. 1997.
    DOI: org/10.1007/BF01242331
  17. A. H. Mohagheghi, S. T. Shanks, J. A. Zigmond, G. L. Simmons, S. L. A. Ward, “A Survey of Uranium and Thorium Background Levels in Water, Urine, and Hair and Determination of Uranium Enrichments by ICP-MS,” J. Radioanal. Nucl. Chem., vol. 263, no 1, pp, 189 – 195, 2005.
    Retrieved from: http://rmcc.foresite-jo.com/sites/default/files/U-Th-ICPMS-Study.pdf;
    Retrieved on: Jun. 19, 2017


Nataša Todorović, Jovana Nikolov, Ivana Stojković, Marija Lekić, Nataša Lazarević

Pages: 103–105

DOI: 10.21175/RadProc.2018.22

Tritium is produced naturally, mainly through interactions of cosmic rays with nitrogen in the atmosphere. Human activities (including thermonuclear bomb tests, operation of nuclear reactors, manufacture of nuclear weapons, and various industrial and medical applications) are also sources of tritium. Once in the environment, tritium occurs mainly in the form of tritiated water (HTO). International legislations and national regulations are in place to impose tight controls on releases as well as to ensure regular monitoring near anthropogenic sources. Tritium monitoring of surface and well waters that supply populations with drinking water are of particular importance. The monitoring data are used to trace releases and also for the evaluation of tritium doses to nearby residents. According to the European Commission, the upper limit for tritium in water is 100Bql-1 [1]. This value was not set based on the probability of health effects. It is a monitoring tool (action level) because tritium activity concentration exceeding 100 Bql-1 could indicate a leakage or a release for which further analysis, to check if other radionuclides are present in water, would be warranted. In this paper, tritium concentrations measured in water samples collected from the Mlaka creek in the vicinity of the “Nuclear Facilities of Serbia” are presented.
  1. The European Commission. (Nov. 3, 1998). Council Directive 98/83/EC of 3 Nov. 1998 on the quality of water intended for human consumption.
    Retrieved from: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31998L0083&from=EN;
    Retrieved on: May 16, 2018
  2. J. Nikolov et al., “Tritium in Water: Hydrology and Health Implications,” in Tritium Advances in Research and Applications, M. Janković, Ed., New York (NY), USA: Nova Science Publishers, 2018, ch. 5, pp. 157 – 213.
  3. J. Nikolov et al., “Different methods for tritium determination in surface water by LSC,” Appl. Radiat. Isot., vol. 71, no. 1, pp. 51 – 56, Jan. 2013.
    DOI: 10.1016/j.apradiso.2012.09.015
    PMid: 23085734
  4. 1220 Quantulus Ultra Low Level Liquid Scintillation Spectrometer, PerkinElmer Life and Analytical Sciences, Shelton (CT), USA, 2005.
    Retrieved from: https://www.perkinelmer.com.cn/CMSResources/Images/46-73870SPC_1220Quantulus.pdf;
    Retrieved on: May 16, 2018
  5. I. Stojković et al., “Methodology of tritium determination in aqueous samples by liquid scintillation counting techniques,” in Tritium Advances in Research and Applications, M. Janković, Ed., New York (NY), USA: Nova Science Publishers, 2018, ch. 4, pp. 99 – 157.
  6. Standard Test Method for Tritium in Drinking Water, ASTM D 4107–08, Jun. 15, 2013.
    DOI: 10.1520/D4107-08R13
  7. I. Jakonić et al., “Optimization of low-level LS counter Quantulus 1220 for tritium determination in water samples,” Radiat. Phys. Chem., vol. 98, pp. 69 – 76, May 2014.
    DOI: 10.1016/j.radphyschem.2014.01.012

Radon and Thoron


A. S. Silva, M. L. Dinis

Pages: 106–110

DOI: 10.21175/RadProc.2018.23

Natural mineral waters used in therapeutic treatments present diverse chemical composition which can include natural radionuclides, such as radon, increasing the risk of exposure to natural radiation for both workers and bathers. The purpose of the present study was to evaluate the radon concentration in natural mineral waters of 17 Portuguese thermal establishments. The evaluation was carried out between 2013 and 2015 in several places of each thermal establishment. An analysis of the compliance between the obtained values and the existing legal requirements for the different parameters concerning radon concentration in water was made. The results showed the presence of anomalous values both higher than the reference level and the action level. Approximately 50% of the obtained results are higher than the reference level recommended by the EU, while 20% of the results exceeded the action level. These results may also imply high concentrations of indoor radon (and hence occupational exposure to radon), since the natural mineral water will be a continuous source of this radionuclide. The high values obtained in some cases are worrying and show the need for a more detailed and extensive study, both in space and time.
  1. Radão – um gás radioativo de origem natural, Instituto Tecnológico e Nuclear, Lisboa, Portugal, 2010. (Radon - a radioactive gas of natural origin, Technological and Nuclear Institute, Lisbon, Portugal, 2010.)
    Retrieved from: http://www.itn.pt/docum/relat/radao/itn_gas_radao.pps;
    Retrieved on: Aug. 15, 2018
  2. U. A. Tarim et al., “Evaluation of radon concentration in well and tap waters in Bursa, Turkey,” Radiat. Prot. Dosim., vol. 150, no. 2, pp. 207 – 212, Jun. 2012.
    DOI: 10.1093/rpd/ncr394
    PMid: 21990391
  3. Radon Toxicity, Agency for Toxic Substances and Disease Registry, Atlanta (GA), USA, 2010.
    Retrieved from: https://www.atsdr.cdc.gov/csem/radon/radon.pdf;
    Retrieved on: Aug. 15, 2018
  4. Radiation Protection against Radon in Workplaces other than Mines, Safety Report Series No. 33, IAEA, Vienna, Austria, 2003.
    Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1168_web.pdf;
    Retrieved on: Aug. 15, 2018
  5. Lung Cancer Risk from Radon and Progeny and Statement on Radon, ICRP Publication 115, ICRP, Ottawa, Canada, 2010.
    Retrieved from: http://radon-and-life.narod.ru/pub/ICRP_115.pdf;
    Retrieved on: Aug. 15, 2018
  6. K. Schmid, T. Kuwet, H. Drexler, “Radon in Indoor Spaces: An underestimated risk factor for lung cancer in environmental medicine,” Dtsch. Arztebl. Int., vol. 107, no. 11, pp. 181 – 186, Mar. 2010.
    DOI: 10.3238/arztebl.2010.0181
    PMid: 20386676
    PMCid: PMC2853156
  7. Radon and cancer, Fact Sheet no. 291, WHO, Geneva, Switzerland, 2007.
    Retrieved from: http://www.who.int/en/news-room/fact-sheets/detail/radon-and-health;
    Retrieved on: Aug. 15, 2018
  8. Effects of Ionizing Radiation, vol. 2, UNSCEAR, New York (NY), 2009.
    Retrieved from: http://www.unscear.org/docs/publications/2006/UNSCEAR_2006_Report_Vol.II.pdf;
    Retrieved on: Aug. 15, 2018
  9. WHO handbook on Indoor Radon: A Public Health Perspective, WHO, Geneva, Switzerland, 2009.
    Retrieved from: http://apps.who.int/iris/bitstream/handle/10665/44149/9789241547673_eng.pdf?sequence=1;
    Retrieved on: Aug. 15, 2018
  10. Health Risk of Radon, EPA, Washington (DC), USA, 2018.
    Retrieved from: https://www.epa.gov/radon/health-risk-radon;
    Retrieved on: Aug. 28, 2018
  11. A. M. S. Ferreira, “Radioactividade das Águas da Região Subterrâneas do Minho,” Dissertação de Mestrado, Universidade do Minho, Escola de Ciências, Braga, Portugal, 2009. (A. M. S. Ferreira, “Water Radioactivity of Waters of the Subterranean Region of Minho,” M.Sc. dissertation, University of Minho, School of Sciences, Braga, Portugal, 2009.)
  12. A. S. Silva, M. L. Dinis, “Measurements of indoor radon and total gamma dose rate in Portuguese thermal spas,” in Occupational Safety and Hygiene IV,P. Arezes, J. S. Baptista, M. Barroso, P. Carneiro, P. Cordeiro, N. Costa, R. Melo, A. S. Miguel, G. Perestrelo, Eds., London, UK: Taylor & Francis Group, 2016. pp. 485 – 489.
  13. K. Q. Lao, Controlling indoor radon: measurement, mitigation, and prevention, New York (NY), USA: Van Nostrand Reinhold, 1990.
  14. M. Al Zoughool, D. Krewski, “Health effects of radon: a review of the literature,” Int. J. Radiat. Biol., vol. 85, no. 1, pp. 57 – 69, Jan. 2009.
    DOI: 10.1080/09553000802635054
    PMid: 19205985
  15. M. Erdogan, F. Ozdemir, N. Eren, “Measurements of radon concentration levels in thermal waters in the region of Konya, Turkey,” Isotopes Environ. Health Stud., vol. 49, no. 4, pp. 567 – 574, 2013.
    DOI: 10.1080/10256016.2013.815182
    PMid: 23937805
  16. A. S. Silva, M. L. Dinis, A. J. S. C. Pereira, “Assessment of indoor radon levels in Portuguese thermal spas,” Radioprotection, vol. 51, no. 4 pp. 249 – 254, Oct-Dec. 2016.
    DOI: 10.1051/radiopro/2016077.
  17. Case studies in Environmental Medicine, ATSDR, Washington (DC), 2012.
    Retrieved from: https://www.atsdr.cdc.gov/csem/radon/radon.pdf;
    Retrieved on: Aug. 15, 2018
  18. Standard Test Method for Radon in Drinking Water, ASTM D5072 – 09, 2009.
    DOI: 10.1520/D5072-09
  19. C. V. M. Gonçalves, A. J. S. C. Pereira, “Radionuclides in groundwater of the Serra do Buçaco region (Central Portugal),” in Proc. XXXV Congress of the International Association of Hydrogeologists, Lisbon, Portuga, 2007, p. 6.
  20. Consumer`s Guide to Radon Reduction: How to Fix Your Home, EPA 402/K-10/005, EPA, Washington (DC), USA, 2013.
    Retrieved from: https://www.epa.gov/sites/production/files/2016-02/documents/2013_consumers_guide_to_radon_reduction.pdf;
    Retrieved on: Aug. 18, 2018
  21. The Council of the European Union. (Oct. 22, 2013). Directive 2013/51/EURATOM laying down requirements for the protection of the health of the general public with regard to radioactive substances in water intended for human consumption.
    Retrieved from: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013L0051&from=EN;
    Retrieved on: Aug. 18, 2018
  22. J. A. S. Cortez et al., Águas Minerais Naturais e de Nascente da Região Centro, Aveiro, Portugal: Mare Liberum, 2012. (J. A. S. Cortez et al., “Natural and Spring Mineral Waters of the Central Region,” Aveiro, Portugal: Mare Liberum, 2012.)
  23. P. Diegues, V. Martins, Águas termais riscos e benefícios para a saúde, Lisboa, Portugal: Auditório IPQ, 2010. (P. Diegues, V. Martins, Thermal waters risks and benefits for health, Lisbon, Portugal: Auditório IPQ, 2010.)
    Retrieved from: https://www.dgs.pt/ficheiros-de-upload-2/sa-aguas-termais-riscos-e-beneficios-para-a-saude_final_a.aspx;
    Retrieved on: Aug. 18, 2018
  24. U. A. Tarim et al., “Evaluation of radon concentration in well and tap waters in Bursa, Turkey,” Radiat. Prot. Dosim., vol.150, no. 2, pp. 207 – 212, Jun. 2012.
    DOI: 10.1093/rpd/ncr394
    PMid: 21990391
  25. V. Radolić, B. Vuković, G. Smit, D. Stanić, J. Planinić, “Radon in the spas of Croatia,” J. Environ. Radioact., vol. 83, no. 2, pp. 191 – 198, 2005.
    DOI: 10.1016/j.jenvrad.2005.02.016
    PMid: 15925434
  26. A. Pereira, L. Neves, C. Gomes. J. Figueiredo, A. Vicente, “Concentração do gás radão em habitações da região de Castelo Branco (Portugal Central) e factores geológicos condicionantes,” em Proc. VI Congresso Ibérico de Geoquímica e XV Semana de Geoquímica, Vila Real, Portugal, 2007. (A. Pereira, L. Neves, C. Gomes, J. Figueiredo, A. Vicente, “Gas concentration in the habitation region of Castelo Branco (Central Portugal) and geological conditioning factors,” in Proc. VI Iberian Congress of Geochemistry and XV Geochemistry Week, Vila Real, Portugal, 2007.)
    Retrieved form: https://dadospdf.com/queue/concentraoes-do-gas-radao-em-habitaoes-da-regiao-de-castelo-branco-portugal-central-e-factores-geologicos-condicionantes-_5a44ce58b7d7bc891f84fb71_pdf?queue_id=-1;
    Retrieved on: Aug. 18, 2018


Kozeta Bode, Hamza Reci, Brunilda Daci, Elida Bylyku, Irma Bërdufi, Emanuela Kiri

Pages: 111–114

DOI: 10.21175/RadProc.2018.24

Radon exposure in the workplace is one of the main exposures to the population after that in dwellings. These workplaces are generally at the ground and/or first floor, where radon concentration is generally higher than at upper ones. This study deals with the measurements of indoor radon concentration in several workplaces located in different geological conditions. Measurements of indoor radon concentration have been carried out using passive bare detectors based on CR -39 in 50 workplaces, including one site at the Centre of Applied Nuclear Physics, Tirana. According to the principles of the methodology, the radon passive detectors have been located inside the workplaces for three months exposure, allowing the calculation of average values, which represent much better the true values of the radon concentration inside of a closed environment. The exposure time of detectors was performed during period January–April 2014. According to the assessment made by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), radon in the natural environment constitutes about 50% of the human exposure to natural radiation or 1.2 mSv/year. The measurements were used to calculate the effective dose due to the radon contribution (mSv/y). Based on the results of the measurements, the minimum value of the radon concentration found is 53 Bq/m3 to 400 Bq/m3 in workplaces, while the reference levels are 300 Bq/m3. Around 90% of the radon concentration values are within reference levels. The results of this study represent a variation of radon concentration related to geological composition. More detailed studies are needed in areas with different geology and construction materials for a better spatial distribution of radon concentration, particularly in public places.
  1. Radiation Protection and Safety of Radiation Sources, No. GSR Part 3, IAEA, Vienna, Austria, 2014.
    Retrieved from: https://www-pub.iaea.org/MTCD/publications/PDF/Pub1578_web-57265295.pdf;
    Retrieved on: Feb. 16, 2018
  2. WHO Handbook on Indoor Radon: A Public Health Perspective, WN 615, WHO, Geneva, Switzerland, 2009.
    Retrieved from: http://whqlibdoc.who.int/publications/2009/9789241547673_eng.pdf;
    Retrieved on: Jan. 15, 2018
  3. The Council of European Union. (Dec. 5, 2013). Council Directive 96/29/ EURATOM Laying down basic safety standards for protection against the dangers arising from exposure to ionizing radiation.
    Retrieved from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32013L0059;
    Retrieved on: Jan. 12, 2018
  4. K. Bode Tushe et al., “First step toward the geographical distribution of indoor radon in dwellings in Albania,” Radiat. Prot. Dosimetry, vol. 172, no. 4, pp. 488 – 495, Dec. 2016.
    DOI: 10.1093/rpd/ncv494
    PMid: 26656073
  5. Këshilli i ministrave. (25.11.2015). No. 957 date 25.11.2015. Për miratimin e rregullores "për nivelet e lejuara të përqendrimit të radonit në ndërtesa dhe ujë, nivelet udhëzuese të radiobërthamave në materialet e ndërtimit, si dhe nivelet e lejuara të radiobërthamave në ushqime dhe produkte kozmetike". (Decision of the Council of Ministers. (Nov. 25, 2015). No. 957, dated 25.11.2015, Improving regulatory standards and concentration of indoor radon and radioactive concentration in goods, in order to protect the public.)
    Retrieved from: http://www.ishp.gov.al/wp-content/uploads/2015/materiale/R.%20Nr.591%20date%2018.08.2011%20Per%20nivelet% 20e%20lejuara%20te%20perqendrimit%20te%20radonit.pdf
    Retrieved on: Jan.12, 2018
  6. M. A. Lopez et al., “Workplace monitoring for exposures to radon and to other natural sources in Europe integration of monitoring for internal and external exposures,” Radiat. Prot. Dosimetry, vol. 112, no. 1, pp. 121 – 139, Nov. 2004.
    DOI: 10.1093/rpd/nch285
    PMid: 15574988
  7. National and regional surveys of radon concentration in dwellings, IAEA/AQ/33, IAEA, Vienna, Austria, 2013.
    Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/IAEA-AQ-33_web.pdf;
    Retrieved on: Jan. 11, 2018
  8. G. M. Kendall, T. J. Smith, “Doses to organs and tissues from radon and its decay products,” J. Radiol. Prot., vol. 22, no. 4, pp. 389 – 406, Dec. 2002.
    DOI: 10.1088/0952-4746/22/4/304
    PMid: 12546226
  9. The 2007 Recommendations of the International Commission on Radiological Protection, ICRP Publication 103, IAEA, Vienna, Austria, 2007.
    Retrieved from: http://www.icrp.org/docs/ICRP_Publication_103-Annals_of_the_ICRP_37(2-4)-Free_extract.pdf;
    Retrieved on: Jan. 15, 2018
  10. H. Reci, S. Dogjani, I. Jata, I. Milushi, “Estimation of radon risk in Shkodra Region,” presented at the Second East European Radon Symposium (Rn SEERAS 2014), Nis, Serbia, 2014.


M. Y.A. Mostafa, M.V. Zhukovsky

Pages: 115–118

DOI: 10.21175/RadProc.2018.25

In this paper, SRIM (The Stopping and Range of Ions in Matter) software package is used to simulate the interaction of alpha particles into the material of radiometric analytical filters. The effect of alpha particle self-absorption in alpha radiometric filters measurements is estimated, especially in the range of natural alpha energy (5-9 MeV, Radon and Thoron alpha energy). Software package SRIM allows to calculate the parameters of the ions interaction with target material using a Monte Carlo simulation method based on a quantum mechanical treatment of ion-atom collisions. The effect of the radiometric analytical filter material on the transmitted efficiency of alpha energy is discussed. As the energy increases the self-absorption in analytical filter material is decreased but still has a clear effect. In this case, the filter material and the space distance between the filter and the detector window decrease the number of alpha particles which reach to the detector window.
  1. R. Whitcher, “Calculation of the average solid angle subtended by a detector to source in a parallel plane by a Monte Carlo method,” Radiat. Prot. Dosim., vol. 102, no. 4, pp. 365 – 369, 2002.
    DOI: 10.1093/oxfordjournals.rpd.a006107
    PMid: 12474948
  2. S. Pickering, “The interpretation of alpha energy spectra from particulate sources,” J. Aerosol Sci., vol. 15, no. 5, pp. 533 – 543, 1984.
    DOI: 10.1016/0021-8502(84)90016-8
  3. R. J. Krupa, K. Kurzak, “Simulation and evaluation of aspectra obtained with semiconductor detectors,” Nucl. Instrum. Methods A, vol. 307, no. 2-3, pp. 469 – 483, Oct. 1991.
    DOI: 10.1016/0168-9002(91)90220-K
  4. C. Roldán, J. L. Ferrero, F. Sanchez, E. Navarro, M. J. Rodrıguez, “Monte Carlo simulation of alpha spectra in low geometry measurements,” Nucl. Instrum. Methods A, vol. 338, no. 2-3, pp. 506 – 510, Jan. 1994.
    DOI: 10.1016/0168-9002(94)91334-X
  5. F. A. Seiler, G. J. Newton, R. A. Guilmette, “Continuous monitoring for airborne alpha emitters in a dusty environment,” Health Phys., vol. 54, no. 5, pp. 503 – 515, May 1988.
    DOI: 10.1097/00004032-198805000-00002
    PMid: 2834306
  6. T. Geryes, C. Monsanglant-Louvet, E. Gehin, “Experimental and simulation methods to evaluate the alpha self-absorption factors for radioactive aerosol fiber filters,” Radiat. Meas., vol. 44, no. 9-10, pp. 763 – 765, Oct-Nov. 2009.
    DOI: 10.1016/j.radmeas.2009.10.059
  7. D. P. Higby, Effects of Particle Size and Velocity on Burial Depth of Airborne Particles in Fiber Filters, Rep. PNL-5278, National Technical Information Service., Springfield (VA), USA, 1984.
    Retrieved from: https://www.osti.gov/servlets/purl/6312811;
    Retrieved on: Jun. 25, 2018
  8. J. W. Luetzelschwab, Ch. Storey, K. Zraly, D. Dussinger, “Self-absorption of alpha and beta particles in a fiberglass filter,” Health Phys., vol. 79, no. 4, pp. 425 – 430, Oct. 2000.
    DOI: 10.1097/00004032-200010000-00012
    PMid: 11007466
  9. J. F. Ziegler, M. D. Ziegler, J. P. Biersack, “SRIM The Stopping and Range of Ions in Matter,” Nucl. Instrum. Methods Phys. Res. B, vol. 268, no. 11-12, pp. 1818 – 1823, Jun. 2010.
    DOI: 10.1016/j.nimb.2010.02.091
  10. Y. A. M. Mostafa, M. Vasyanovich, M. Zhukovsky, N. Zaitceva, “Calibration system for radon EEC measurements,” Radiat. Prot. Dosimetry, vol. 164, no. 4, pp. 587 – 590, Jun. 2015.
    DOI: 10.1093/rpd/ncv316
    PMid: 25979737


Dragan Avramović, Igor Čeliković, Predrag Ujić, Ivana Vukanac, Aleksandar Kandić, Aleksandar Jevremović, Dunja Antonijević, Boris Lončar

Pages: 119–122

DOI: 10.21175/RadProc.2018.26

It is well-known that radon is the second important human carcinogen for lung cancer, after smoking. The major sources of indoor radon concentrations are soil and building material. Under certain conditions, a dose received from the inhalation of radon and its progenies can be higher than a dose received from the external exposure due to radium concentration in building materials. In this contribution, the results of the radon and thoron exhalation rate measurement from 9 commonly used building materials are reported. Exhalation rate measurements were performed with accumulation chamber method using active device for measurement of radon concentration.
  1. Sources and Effects of Ionizing Radiation, vol. 1, Annex B, UNSCEAR 2000 Report to the General Assembly with Scientific Annexes, UNSCEAR, New York (NY), USA, 2000.
    Retrieved from: http://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Annex-B.pdf;
    Retrieved on: Nov. 20, 2018
  2. Handbook on Indoor Radon: A public health perspective, WHO, Geneva, Switzerland, 2009.
    Retrieved from: http://apps.who.int/iris/bitstream/handle/10665/44149/9789241547673_eng.pdf?sequence=1;
    Retrieved on: Nov. 20, 2018
  3. Who guidelines for indoor air quality: selected pollutants, WHO Regional Office for Europe, Copenhagen, Denmark, 2010.
    Retrieved from: http://www.euro.who.int/__data/assets/pdf_file/0009/128169/e94535.pdf;
    Retrieved on: Nov. 20, 2018
  4. I. Yarmoshenko, A. Vasilyev, A. Onishchenko, S. Kiselev, M. Zhukovsky, “Indoor radon problem in energy efficient multi-storey buildings,” Radiat. Prot. Dosim. vol. 160, no. 1-3, pp. 53 – 56, Jul. 2014.
    DOI: 10.1093/rpd/ncu110
    PMid: 24723188
  5. P. Ujić et al., “Internal exposure from building materials exhaling 222 Rn and 220 Rn as compared to external exposure due to their natural radioactivity content,” Appl. Radiat. Isot., vol. 68, no. 1, pp. 201 – 206, Jan. 2010.
    DOI: 10.1016/j.apradiso.2009.10.003
    PMid: 19880324
  6. P. Ujić, I. Čeliković, A. Kandić, Z. Žunić, “Standardization and difficulties of the thoron exhalation rate measurements using an accumulation chamber,” Radiat. Meas., vol. 43, no. 8, pp. 1396 – 1401, Sep. 2008.
    DOI: 10.1016/j.radmeas.2008.03.003
  7. A. Awhida et al., “Novel method of measurement of radon exhalation from building materials,” J. Environ. Radiat. vol. 164, pp. 337 – 343, Nov. 2016.
    DOI: 10.1016/j.jenvrad.2016.08.009
    PMid: 27552657
  8. G. Jia, J. Jia, “Determination of radium isotopes in environmental samples by gamma spectrometry, liquid scintillation counting and alpha spectrometry: a review of analytical methodology,” J. Environ. Radiat. vol. 106, pp. 98 – 119, 2012.
    DOI: 10.1016/j.jenvrad.2011.12.003
  9. B. Šešlak et al., “Determination of 210Pb by direct gamma-ray spectrometry, beta counting via 210Bi and alpha particle spectrometry vi 210Po in coal, slag and ash samples from thermal power plant,” J. Radioanal. Nucl. Chem. vol. 311, no. 1, pp. 719 – 726, Jan. 2017.
    DOI: 10.1007/s10967-016-5028-6
  10. F. A. Abu-Jarad, “Application of nuclear track detectors for radon related measurements,” Nucl. Tracks Radiat. Meas. vol. 15, no. 1-4, pp. 525 – 534, 1988.
    DOI: 10.1016/1359-0189(88)90195-1
  11. N. P. Petropoulos, M. J. Anagnostakis, S. E. Simopoulos, “Building materials radon exhalation rate: ERRICCA intercomparison exercise results,” Sci. Total Environ. vol. 272, no. 1-3, pp. 109 – 118, 2001.
    DOI: 10.1016/S0048-9697(01)00674-X
  12. D. Krstić, D. Nikezić, N. Stevanović, D. Vučić, “Radioactivity of some domestic and imported building materials from South Eastern Europe,” Radiat. Meas. vol. 42, pp. 1731 – 1736, Nov. 2007.
    DOI: 10.1016/j.radmeas.2007.09.001
  13. S. Durrani, R. Ilić, Radon measurment by Etched Track Detectors, Singapore, Signapore: World Scientific Publishing Co.,Pte., 1997.
    DOI: 10.1142/3106


Antonio Carlos Iglesias Rodrigues, Tufic Madi Filho, Davilson Gomes da Silva

Pages: 123–126

DOI: 10.21175/RadProc.2018.27

The IEA-R1 research reactor works 40h weekly, with 4.5 Mw power. The storage rack for spent fuel elements has less than half of its initial capacity. Under these conditions, the reactor operating for 32h/week will have 3 spent fuel by year, approximately 3 utilization rate Positions/year; thus, we will have only about six years of capacity for storage. Since the desired service life of the IEA-R1 is at least another 20 years, it will be necessary to increase the storage capacity of spent fuel by doubling the wet storage in the reactor’s pool. 3M’s neutron absorber BoralcanTM was chosen after reviewing the literature about available materials for the construction of a new storage rack. This work presents studies for the construction of new storage racks with double of capacity using the same place of the current ones. Criticality safety analysis was performed with MCNP-5 Monte Carlo code, using two Evaluated Nuclear Data Files (ENDF/B-VI and ENDF/B-VII) in calculations, and subsequently, the results were compared. The full charge of the storage rack with only new fuel elements (maximum reactivity) was considered to calculate the keff. The results obtained in the simulations show that it is possible doubling the storage capacity of the spent fuel elements. Additionally, it complies with safety limits established by International Atomic Energy Agency (IAEA) and Brazilian Commission of Nuclear Energy (CNEN) standards to the criticality criteria (keff <0.95). This is only possible with the use of neutron absorber material.
  1. R. N. Saxena, “The IEA-R1 research reactor 50 years of operating experience and utilization” in Proc. IAEA International Conference on Safe Management and Utilization of Research Reactors, Sydney, Australia, 2007.
    Retrieved from: https://www-pub.iaea.org/mtcd/meetings/PDFplus/2007/cn156/cn156presentations/cn156_Saxena.pdf;
    Retrieved on: Feb. 24, 2018
  2. A. C. I. Rodrigues, T. Madi Filho, W. And Ricci Filho, “Borated stainless steel storage project to the spent fuel of the IEA-R1 reactor,” in Proc. International Nuclear Atlantic Conference (INAC 2013), Recife, Brazil, 2013.
    Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/45/071/45071042.pdf?r=1&r=1;
    Retrieved on: Feb. 24, 2018
  3. A. C. I. Rodrigues, T. Madi Filho, P. T. D. Siqueira, W. Ricci Filho, “Design of a new wet storage rack for spent fuels from IEA-R1 reactor,” in Proc. International Nuclear Atlantic Conference (INAC 2015), São Paulo, Brazil, 2015.
    Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/47/017/47017700.pdf?r=1&r=1;
    Retrieved on: Feb. 24, 2018
  4. Criticality Safety in the Handling of Fissile Material, IAEA Safety Standards Series No. SSG-27, IAEA, Vienna, Austria, 2014.
    Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1594_web-51742615.pdf;
    Retrieved on: Feb. 24, 2018
  5. A. C. I. Rodrigues, “Study and design of the new baskets with boron for storage elements fuel burned of the IEA-R1 reactor,” M.Sc. dissertation, Nuclear and Energy Research Institute, São Paulo, Brazil, 2016.
    DOI: 10.11606/D.85.2016.tde-16092016-115614
  6. Material Qualification of Alcan Composite for Spent Fuel Storage, NET-259-03, Northeast Technology Corp., Kingston (NY), USA, 2008.
    Retrieved from: https://www.nrc.gov/docs/ML1319/ML13199A039.pdf;
    Retrieved on: Feb. 24, 2008
  7. MNCP – A General Monte Carlo N-Particle Transport Code, Version 5, Los Alamos National Laboratory, Los Alamos (NM), USA, 2008.
    Retrieved from: https://mcnp.lanl.gov/pdf_files/la-ur-03-1987.pdf;
    Retrieved on: Feb. 14, 2018

Radiation Detectors


Atanas Tanushevski, Maja Lazarova, Ivan Boev

Pages: 127–131

DOI: 10.21175/RadProc.2018.28

ZnO polycrystalline thin films and ZnO nanorod arrays were obtained by the spray pyrolysis method at a substrate temperature of 450 °C. By analyzing the XRD diffractograms, the hexagonal crystal structure of the ZnO films and ZnO nanorods was determined. On the other hand, the grain size of the films and nanorods was determined using the Debye-Scherrer equation. The optical properties of the films and nanorods were determined by measuring the dependence of the transmission on the wavelength of the light. Also, the optical band gap of 3.28 eV for the ZnO films and 3.21 eV for the ZnO nanorods was estimated. The photoconductivity spectrum of thin films and nanorods was recorded in the visible light range and their photoconductivity was studied when they were illuminated by X-rays, where the incident X-rays increase the conductivity of thin films of nanorods. The surface morphologies of the ZnO films and the ZnO nanorods, as well as the grain size of the film and the dimensions of the nanorods, were studied by a scanning electron microscope.
  1. D. Park, K. Yong, “Photoconductivity of vertically aligned ZnO nanoneedle array,” J. Vac. Sci. Technol. B Nanotechnol. Microelectron., vol. 26, no. 6, pp. 1933 – 1936, Nov. 2008.
    DOI: 10.1116/1.2998730
  2. S. K. Mishra, R. K. Srivastava, S. G. Prakash, “ZnO nanoparticles: Structural, optical and photoconductivity characteristics”, J. Alloys Compd., vol. 539, no. 25, pp. 1 – 6, Oct. 2012.
    DOI: 10.1016/j.jallcom.2012.06.024
  3. S. T. Tan et al., “Properties of polycrystalline ZnO thin films by metal organic chemical vapor deposition”, J. Cryst. Growth, vol. 281, no. 2-4, pp. 571 – 576, Aug. 2005.
    DOI: 10.1016/j.jcrysgro.2005.04.093
  4. T. Dedova, O. Volobujeva, J. Klauson, A. Mere, M. Krunks, “ZnO Nanorods via Spray Deposition of Solutions Containing Zinc Chloride and Thiocarbamide”, Nanoscale Res. Lett., vol. 2, no. 8, pp. 391 – 396, Jul. 2007.
    DOI: 10.1007/s11671-007-9072-6
    PMid: 21794191
    PMCid: PMC3246384
  5. Y. Bu, Z. Chen, W. Li, J. Yu, “High-Efficiency Photoelectrochemical Properties by a Highly Crystalline CdS-Sensitized ZnO Nanorod Array”, ACS Appl. Mater. Interfaces, vol. 5, no. 11, pp. 5097 – 5104, Jun. 2013.
    DOI: 10.1021/am400964c
    PMid: 23688263
  6. X. Zhao et al., “Nanosecond X-ray detector based on high resistivity ZnO single crystal semiconductor”, Appl. Phys. Lett., vol. 108, no. 17, 171103, Apr. 2016.
    DOI: 10.1063/1.4947085
  7. J. Y. Duboz, “GaN for x-ray detection”, Appl. Phys. Lett., vol. 92, no. 26, 263501, Jun. 2008.
    DOI: 10.1063/1.2951619
  8. H. Endo, “Fabrication and characterization of a ZnO X-ray sensor using a high-resistivity ZnO single crystal grown by the hydro thermal method”, Nucl. Instrum. Methods Phys. Res. A, vol. 665, pp. 15–18, Feb. 2011.
    DOI: 10.1016/j.nima.2011.11.009
  9. T. H. Lee; H. J. Sue, X. Cheng, “Solid-state dye-sensitized solar cells based on ZnO nanoparticle and nanorod array hybrid Photoanodes”, Nanoscale Res. Lett., vol. 6, no. 517, pp. 1 – 8, Sep. 2011.
    DOI: 10.1186/1556-276X-6-517
  10. M. J. Jin, “Low-Temperature Solution-Based Growth of ZnO Nanorods and Thin Films on Si Substrates”, J. Nanosci. Nanotechnol., vol. 9, no. 12, pp. 1 – 4, Dec. 2009.
    DOI: 10.1166/jnn.2009.1762
  11. A. Tanuševski, V. Georgieva, “Optical and electrical properties of nanocrystal zinc oxide films prepared by dc magnetron sputtering at different sputtering pressures”, Appl. Surf. Sci., vol. 256, no. 16, pp. 5056 – 5060, Jun. 2010.
    DOI: 10.1016/j.apsusc.2010.03.059
  12. A. K. Yıldırım, B. Altıokka, “Effect of Potential on Structural, Morphological and Optical Properties of ZnO Thin Films Obtained by Electrodeposition”, J. Mater. Sci. Eng. B, vol. 5, no. 3-4, pp. 107 – 112, Apr. 2015.
    DOI: 10.17265/2161-6221/2015.3-4.001
  13. N. Memarian et al., “Hierarchically Assembled ZnO Nanocrystallites for High-Efficiency Dye-Sensitized Solar Cells”, Angew. Chem. Int. Ed., vol. 50, no. 51, pp. 12321 –12325, Dec. 2011.
    DOI: 10.1002/anie.201104605
  14. B. Thangaraju, “Structural and electrical studies on highly conducting spray deposited fluorine and antimony doped SnO2 thin films from SnCl2 precursor”, Thin Solid Films, vol. 402, no. 1-2, pp. 71 – 78, Jan. 2002.
    DOI: 10.1016/S0040-6090(01)01667-4
  15. A. Abdolahzadeh Ziabari, F.E.Ghodsi, “Optoelectronic studies of sol–gel derived nanostructured CdO–ZnO composite films”, Journal of Alloys and Compounds, vol. 509, no 35, pp. 8748-8755, Sep. 2011.
    DOI: 10.1016j.jallcom.2011.06.050
  16. A.M.M.Tanveer Karim, M.K.R.Khan, M.Mozibur Rahman, “Effect of Zn/Cd ratio on the optical constants and photoconductive gain of ZnO–CdO crystalline thin films”, Materials Science in Semiconductor Processing, vol. 41, pp. 184-192, Jan. 2016.
    DOI: 10.1016/j.mssp.2015.08.037
  17. Ayça Kıyak Yıldırım, Barış Altıokka, “Effects of concentration on CdO films grown by electrodeposition”, Applied Nanoscience, vol. 7, no. 3–4, pp. 131–135, Apr. 2017.
    DOI: 10.1007/s13204-017-0552-4
  18. Ayça Kıyak Yıldırım, Barış Altıokka, “An investigation of effects of bath temperature on CdO films prepared by electrodeposition”, Applied Nanoscience, vol. 7, no. 8, pp. 513–518. , Nov. 2017.
    DOI: 10.1007/s13204-017-0591-x
  19. Barış Altıokka, Ayça Kıyak Yıldırım, “Effects of pH on CdO films deposited onto ITO coated glass substrates by electrodeposition”, International Journal of Surface Science and Engineering, vol. 12, no. 1, pp. 13, Jan. 2018.
    DOI: 10.1504/IJSURFSE.2018.090052
  20. R. Saravanan, M. Prema Rani, “Metal and Alloy Bonding: An Experimental Analysis Charge Density in Metals and Alloys”,Springer, ch. 1, pp. 25-26, Sep. 2011.
    DOI: 10.1007/978-1-4471-2204-3
  21. H.A. Wahab, A.A. Salama, A.A. El-Saeid, O. Nur, M. Willander, I.K. Battisha, “Optical, structural and morphological studies of (ZnO) nano-rod thin films for biosensor applications using sol gel technique”, Results in Physics, vol. 3, pp. 46–51, Dec. 2013.
    DOI: 10.1016/j.rinp.2013.01.005
  22. J. Haug, A. Chassé, M. Dubiel, Ch. Eisenschmidt, M. Khalid, and P. Esquinazi, “Characterization of lattice defects by x-ray absorption spectroscopy at the Zn K-edge in ferromagnetic, pure ZnO films”, J. Appl. Phys, vol. 110, no. 063507, pp. 1-11, Sep. 2011
    DOI: 10.1063/1.3631774
  23. R. Gurwitz, R. Cohen, I. Shalish, “Interaction of light with the ZnO surface: Photon induced oxygen “breathing,” oxygen vacancies, persistent photoconductivity, and persistent photovoltage,” J. Appl. Phys., vol. 115, no. 3, 033701, Jan. 2014.
    DOI: 10.1063/1.4861413
  24. Th. J. Penfold et al., “Revealing hole trapping in zinc oxide nanoparticles by time-resolved X-ray spectroscopy”, Nat. Commun., vol.1, no.478. pp. 9, Dec. 2018.
    DOI: 10.1038/s41467-018-02870-4


D. Richter, I. Słonecka, S. Schischke, K. Dornich

Pages: 132–137

DOI: 10.21175/RadProc.2018.29

A new series of dosimetric devices, based on the optically stimulated luminescence (OSL) of BeO, is presented. The dosimetric properties of BeO and the use of OSL are favorable with a linear range at least up to 10 Sv, near tissue energy response, and because of the use of OSL as a measurement technique, the dose information can be re-read. The myOSLraser device combines measurement and zeroing equipment in a single unit and is thus cost and time efficient. The manual reader for single myOSLdosimeters, consisting of two BeO-elements for Hp(0.07) and Hp(10), can be expanded by myOSLautomation, which allows a fully automated analysis of 200 dosimeters. The system exceeds the requirements of EN/IEC 62387. A truly portable handheld device (myOSLchip) allows the manual operation of single element dosimeters, e.g. in phantoms. A simple method is proposed to use the OSL decay signal for the normalization of equipment and bringing into line the sensitivity between instruments.
  1. E. Bulur, H. Y. Göksu, “OSL from BeO ceramics: new observations from an old material,” Radiat. Meas., vol. 29, no. 6, pp. 639 – 650, Dec. 1998.
    DOI: 10.1016/S1350-4487(98)00084-5
  2. E. G. Yukihara, et al., “State of art: Optically stimulated luminescence dosimetry – Frontiers of future research,” Radiat. Meas., vol. 71, pp. 15 – 24, Dec. 2014.
    DOI: 10.1016/j.radmeas.2014.03.023
  3. A. J. J. Bos, “High sensitivity thermoluminescence dosimetry,” Nucl. Instrum. Methods Phys. Res. B, vol. 184, no. 1-2, pp. 3 – 28, Sep. 2001.
    DOI: 10.1016/S0168-583X(01)00717-0
  4. D. P. Groppo, L. V. E. Caldas, “Luminescent response from BeO exposed to alpha, beta and X radiations,” Radiat. Meas., vol. 71, pp. 81 – 85, Dec. 2014.
    DOI: 10.1016/j.radmeas.2014.07.009
  5. A. Jahn et al., “OSL efficiency for BeO OSL dosimeters,” Radiat. Meas., vol. 71, pp. 104 – 107, Dec. 2014.
    DOI: 10.1016/j.radmeas.2014.03.024
  6. A. Jahn et al., “Environmental dosimetry with the BeOSL personal dosimeter,” Radiat. Prot. Dosimetry, vol. 170, no. 1-4, pp. 346 – 349, Sep. 2016.
    DOI: 10.1093/rpd/ncw079
    PMid: 27060113
  7. E. G. Yukihara, “BeO optically stimulated luminescence dosimetry using automated research readers,” Radiat. Meas., vol. 94, pp. 27 – 34, Nov. 2016.
    DOI: 10.1016/j.radmeas.2016.08.008
  8. S. Mattsson et al., “Dose Quantities and Units for Radiation Protection”, in S. Mattsson, and C. Hoeschen Radiation Protection in Nuclear Medicine. Springer, Berlin, pp. 7-18
  9. D. Richter et al., “Lexsyg – a new system for luminescence research,” Geochronometria, vol. 40, no. 4, pp. 220 – 228, Sep. 2013.
    DOI: 10.2478/s13386-013-0110-0
  10. E. G. Yukihara, S. W. S. McKeever, Optically stimulated luminescence: Fundamentals and applications, Chichester, UK: John Wiley & Sons Ltd., 2011.
    DOI: 10.1002/9780470977064
  11. E. Bulur, B. E. Saraç, “Time-resolved OSL studies on BeO ceramics,” Radiat. Meas., vol. 59, pp. 129 – 138, Dec. 2013.
    DOI: 10.1016/j.radmeas.2013.04.009
  12. E. G. Yukihara, “Luminescence properties of BeO optically stimulated luminescence (OSL) detectors,” Radiat. Meas., vol. 46, no. 6-7, pp. 580 – 587, Jun-Jul. 2011.
    DOI: 10.1016/j.radmeas.2011.04.013
  13. J. H. Dormo, Optical calibration of TLD readers, Trident Scholar Project Report No. 305., U.S. Naval Academy, Annapolis (MD), USA, 2003.
    Retrieved from: http://www.dtic.mil/dtic/tr/fulltext/u2/a416350.pdf;
    Retrieved on: Jun. 14, 2018


David Zoul, Martin Cabalka, Markéta Koplová

Pages: 138–142

DOI: 10.21175/RadProc.2018.30

The aim of this research is to study the use of polycarbonate as a reusable radiochromic integrating dosimeter for the determination of high doses of ionizing radiation in the (range of 0.1 to 10 kGy). The region of the linear dependence of the optical density of polycarbonate samples on gamma radiation dose, as well as the fading of the radiation effect and the possibility of accelerating this fading by annealing have been explored. To determine the effect of oxygen concentration on changes in optical density and the rate of oxygen diffusion into the polycarbonate, some samples were stored in a pure oxygen atmosphere, produced by electrolytic dissociation of distilled water using a fuel cell.
  1. A. Shamshad, M. Rashid, A. Husain, “High gamma dose dosimetry by polycarbonates,” Radiat. Phys. Chem., vol. 50, no. 3, pp. 307 – 311, Sep. 1997.
    DOI: 10.1016/S0969-806X(97)00038-8
  2. A. M. S. Galante, L. L. Campos, “Mapping radiation fields in container for industrial gamma-irradiation dosimeters,” Appl. Radiat. Isot., vol. 70, no. 7, pp. 1264 – 1266, Jul. 2012.
    DOI: 10.1016/j.apradiso.2011.12.046
    PMid: 22264796
  3. Dosimetry Systems for Use in Radiation Processing, ICRU Report 80, ICRU, Bethesda (MD), USA, 2008.
    DOI: 10.1093/jicru/ndn024
  4. L. Musílek, J. Šeda, J. Trousil, Dozimetrie ionizujícího záření – integrující metody, 1. vydání, Praha, Česká republika: ČTU, 1992.(L. Musílek, J. Šeda, J. Trousil, Dosimetry of ionizing radiation – integrating methods, 1st ed., Prague, Czech Republic: ČTU, 1992.)
  5. J. Šeda, Dozimetrie ionizujícího záření, 1. vydání, Praha, Česká republika: SNTL, 1983. (J. Šeda, Dosimetry of ionizing radiation, 1st ed., Prague, Czech Republic: SNTL, 1983.)
  6. D. Zoul, “Studie tmavnutí polykarbonátových desek v poli ionizujícího záření,” Bezpečnost jaderné energie, vol. 24, no. 62, pp. 33 – 38, 2016. (D. Zhoul, “A study of the changes in optical density of the polycarbonate plates in the field of ionizing radiation,” Nuclear power safety, vol. 24, no. 62, pp. 33 – 38, 2016.)

Radiation Effects


Roland Wolff, Rainer Frentzel-Beyme, Inge Schmitz-Feuerhake

Pages: 143–148

DOI: 10.21175/RadProc.2018.31

Chronic lymphatic leukemia (CLL) was formerly considered to be a non-radiogenic form of cancer. Non-Hodgkin Lymphomas (NHL) were supposed to be very rare after radiation exposure. These historical estimations were based on the early observations of the Japanese A-bomb survivors. In contrast to these conclusions, increasing rates of CLL and NHL were found in the last decades in nuclear workers and liquidators of Chernobyl, i.e. in cases of low dose chronic exposure. Estimating the dose response, the authors generally refer to the bone marrow as the corresponding target organ which often leads to surprisingly high-risk figures for the radiation effect. We recently investigated three cases of people suffering from B-lymphocyte proliferation (two CLLs and one lymphoma) who were involved in the decontamination of nuclear establishments, because Germany decided to go out of nuclear energy, and they started tearing down the plants. The men worked in the same enterprise, were exposed to external doses of 46, 108 and 116 mSv, and had certainly inhaled alpha emitters such as uranium and plutonium isotopes. In the 1980s, radiation hematologists stated that the bone marrow should not be considered as the relevant target of B-cell lymphomas and CLL of B-cell type because the effect results in a proliferation of mature B lymphocytes which mainly occur outside the bone marrow. Therefore, the diseases may be induced in the whole pool of B lymphocytes including all peripheral locations also comprising lymph nodes and lymphatic organs. Our impression is that CLL and NHL are initiated predominantly at workplaces where the possibility of open radioactivity exists: in uranium mines, uranium and radium processing facilities, nuclear facilities, and consequently in liquidators. Several studies involving animals and humans have shown that incorporated radionuclides such as uranium, thorium, and plutonium concentrate in the lymph nodes leading to higher radiation doses to the lymphocytes than are provided in other tissues. This effect is explained by the immunological reaction of macrophages functioning as scavengers of particles such as materials emitting alpha-radiation. These cells circulating via the lymph vessels are stored in the stationary lymph nodes. If the target organ for dosimetry must be seen in all mature B lymphocytes in the body, this will be valid for all kinds of external and internal exposures. Except in cases of homogeneous whole-body exposure, any dose estimation will be extremely unsafe or – as in our examples – not possible. These limitations must be considered when planning the radiation protection strategies for nuclear workers and adequate evaluation in compensation cases.
  1. Sources and effects of ionizing radiation, UNSCEAR 1994 Report to the General Assembly, with scientific Annexes, UNSCEAR, New York (NY), USA, 1994.
    Retrieved from: http://www.unscear.org/docs/publications/1994/UNSCEAR_1994_Report.pdf;
    Retrieved on: Aug. 2, 2018
  2. V. E. Archer, J. K. Wagoner, F. E. Lundin, “Cancer mortality among uranium mill workers,” J. Occup. Med., vol. 15, pp. 11 – 14, 1973.
    PMid: 4684721
  3. D. B. Richardson, S. Wing, J. Schroeder, I. Schmitz-Feuerhake, W. Hoffmann, “Ionizing radiation and chronic lymphocytic leukemia.” Environ. Health Perspect, vol. 113, no. 1, pp. 1 – 5, Jan. 2005.
    DOI: 10.1289/ehp.7433
    PMid: 15626639
    PMCid: PMC1253701
  4. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, WHO, Lyon, France, 2008.
    Retrieved from: http://publications.iarc.fr/_publications/media/download/1511/700ac655d7f248cf1044efd985275086ed4f341f.pdf;
    Retrieved on: Aug. 2, 2018
  5. I. R. Terry, “Modern new nuclear fuel characteristics and radiation protection aspects,” Radiat. Prot. Dosim.,vol. 115, no. 1-4, pp. 110 – 111, 2005.
    DOI: 10.1093/rpd/nci239
    PMid: 16381693
  6. K. H. Adzersen, S. Friedrichs, N. Becker, “Are epidemiological data on lymphoma incidence comparable? Results from an application of the coding recommendations of WHO, InterLymph, ENCR and SEER to a cancer registry dataset,” J. Cancer Res. Clin. Oncol., vol. 142, no. 1, pp. 167 – 175, Jan. 2016.
    DOI: 10.1007/s00432-015-2017-z
    PMid: 26206482
  7. D. L. Preston et al., “Cancer incidence in atomic bomb survivors. Part III: Leukemia, lymphoma and multiple myeloma, 1950-1987,” Radiat. Res., vol. 137, no. 2, pp. S68 – S97, Feb. 1994.
    DOI: 10.2307/3578893
    PMid: 8127953
  8. D. B. Richardson et al., “Positive associations between ionizing radiation and lymphoma mortality among men,” Am. J. Epidemiol., vol. 169, no. 8, pp. 969 – 976, Apr. 2009.
    DOI: 10.1093/aje/kwp018
    PMid: 19270049
    PMCid: PMC2732978
  9. W. L. Hsu et al., “The incidence of leukemia, lymphoma, and multiple myeloma among atomic bomb survivors: 1950-2001,” Radiat. Res.,vol. 179, no. 3, pp. 361 – 382, Mar. 2013.
    DOI: 10.1667/RR2892.1
    PMid: 23398354
    PMCid: PMC3875218
  10. H. Morgenstern, B. Ritz, “Effects of radiation and chemical exposures on cancer mortality among Rocketdyne workers: a review of three cohort studies,” Occup. Med. State Art,vol. 16, no. 2, pp. 219 – 237, Apr-Jun. 2001.
    PMid: 11319049
  11. N. A. Koshurnikova et al., “Mortality from malignancies of the hematopoietic and lymphatic tissues among personnel of the first nuclear plant in the USSR,” Sci. Total Environ., vol. 142, no. 1-2, pp. 19 – 23, Mar. 1994.
    DOI: 10.1016/0048-9697(94)90068-X
  12. R. Z. Omar, J. A. Barber, P. G. Smith, “Cancer mortality and morbidity among plutonium workers at the Sellafield plant of British nuclear fuels,” Brit. J. Cancer, vol. 79, no. 7-8, pp. 1288 – 1301, Mar. 1999.
    DOI: 10.1038/sj.bjc.6690207
    PMid: 10098774
    PMCid: PMC2362215
  13. G. M. Matanoski et al., “Cancer risks and low-level radiation in U.S. shipyard workers,” J. Radiat. Res., vol. 49, no. 1, pp. 83 – 91, Jan. 2008.
    DOI: 10.1269/jrr.06082
  14. A. Kesminiene et al., “Risk of hematological malignancies among Chernobyl Liquidators.” Radiat. Res., vol. 170, no. 6, pp. 721 – 735, Dec. 2008.
    DOI: 10.1667/RR1231.1
    PMid: 19138033
    PMCid: PMC2904977
  15. A. Berrington, S. C. Darby, H. A. Weiss, R. Doll, “100 years of observation on British radiologists: mortality from cancer and other causes,” Brit. J. Radiol., vol. 74, no. 882, pp. 507 – 519, Jun. 2001.
    DOI: 10.1259/bjr.74.882.740507
    PMid: 11459730
  16. A. Buja et al., “Cancer incidence among military and civil pilots and flight attendants: an analysis on published data,” Toxicol. Ind. Health, vol. 21, no. 10, pp. 273 – 282, Nov. 2005.
    DOI: 10.1191/0748233705th238oa
    PMid: 16463960
  17. C. M. Ronckers et al., “Cancer incidence after nasopharyngeal radium irradiation,” Epidemiology, vol. 13, no. 5, pp. 552 – 560, Sep. 2002.
    DOI: 10.1097/00001648-200209000-00011
    PMid: 12192225
  18. M. Ichimaru, T. Ishimaru, J. L. Belsky, “Incidence of leukemia in atomic bomb survivors, Hiroshima & Nagasaki 1950-71,” J. Radiat. Res., vol. 19, no. 3, pp. 262 – 282, Sep. 1976.
    DOI: 10.1269/jrr.19.262
    PMid: 739446
  19. T. Watanabe, M. Miyao, R. Honda, Y. Yamada, “Hiro-shima survivors exposed to very low doses of A-bomb primary radiation showed a high risk for cancers,” Environ. Health Prev. Med., vol. 13, no. 5, pp. 264 – 270, Sep. 2008.
    DOI: 10.1007/s12199-008-0039-8
    PMid: 19568913
    PMCid: PMC2698250
  20. M. K. Schubauer-Berigan et al., “Chronic lymphocytic leukaemia and radiation: findings among workers at five US nuclear facilities and a review of the recent literature,” Br. J. Haematol., vol. 139, no. 5, pp. 799 – 808, Dec. 2007.
    DOI: 10.1111/j.1365-2141.2007.06843.x
    PMid: 17922878
  21. D. Gluzman et al., “Patterns of hematological malignancies in Chernobyl clean-up workers (1996-2005),” Exp. Oncol., vol.28, no. 1, pp. 60 – 63, Mar. 2006.
    PMid: 16614710
  22. D. Bazuka et al., “Chronic lymphocytic leukemia in Chornobyl cleanup workers,” Health Phys., vol. 111, no. 2, pp. 186 – 191, Aug. 2016.
    DOI: 10.1097/HP.0000000000000440
    PMid: 27356063
  23. L. B. Zablotska et al., “Radiation and the risk of chronic lymphocytic and other leukemias among Chernobyl cleanup workers,” Environ. Health Persp., vol. 121, no. 1, pp. 59 – 65, Jan. 2013.
    DOI: 10.1289/ehp.1204996
    PMid: 23149165
    PMCid: PMC3553431
  24. V. Rericha, M. Kulich, R. Rericha, D. L. Shore, D. P. Sandler, “Incidence of leukemia, lymphoma, and multiple myeloma in Czech uranium miners: a case-cohort study,” Environ. Health Persp., vol. 114, no. 6, pp. 818 – 822, Jun. 2006.
    DOI: 10.1289/ehp.8476
    PMid: 16759978
    PMCid: PMC1480508
  25. M. Mohner, J. Gellissen, J. W. Marsh, D. Gregoratto, “Occupational and diagnostic exposure to ionizing radiation and leukemia risk among German uranium miners,” Health Phys., vol. 99, no. 3, pp. 314 – 321, Sep. 2010.
    DOI: 10.1097/HP.0b013e3181cd6536
    PMid: 20699692
  26. R. S. Lane, S. E. Frost, G. R. Howe, L. B. Zablotska, “Mor-tality (1950-1999) and cancer incidence (1969-1999) in the cohort of Eldorado uranium workers,” Radiat. Res.,vol.174, no. 6a, pp. 773 – 786, Dec. 2010.
    DOI: 10.1667/RR2237.1
    PMid: 21128801
  27. Klinische Haematologie, H. Begemann, J. Rastetter, Eds., Stuttgart, Deutschland: Georg Thieme, 1986. (Clinical Hematology, H. Begemann, J. Rastetter, Eds., Stuttgart, Germany: Georg Thieme, 1986.)
  28. D. F. Gluzman, L. M. Sklyarenko, V. A. Nadgornaya, M. P. Zavelich, “Mature B-cell neoplasms in Chernobyl clean-up workers of 1986-1987: summary of cytomorpho-logical and immunocytochemical study in 25 years after Chernobyl accident,” Exp. Oncol., vol. 33, no. 1, pp. 47 – 51, Mar. 2011.
    PMid: 21423095
  29. M. S. Linet et al., “Chronic lymphocytic leukaemia: an overview of aetiology in light of recent developments in classification and pathogenesis,” Br. J. Haematol., vol. 139, no. 5, pp. 672 – 686, Dec. 2007.
    DOI: 10.1111/j.1365-2141.2007.06847.x
    PMid: 18021081
  30. I. Abramenko et al., “Chronic lymphocytic leukemia patients exposed to ionizing radiation due to Chernobyl NPP accident – with focus on immunoglobulin heavy chain gene analysis,” Leukemia Res., vol. 32, no. 4, pp. 535 – 545, Apr. 2008.
    DOI: 10.1016/j.leukres.2007.08.013
    PMid: 17897714
  31. Human Respiratory Tract Model for Radiological Protection, ICRP Publication 66, ICRP, Ottawa, Canada, 1994.
  32. M. A. Roy, “Reliability of dose coefficients calculated with the respiratory tract model of the ICRP,” Radiat. Prot. Dosim.,vol.79, no. 1-4, pp. 237 – 240, Oct. 1998.
    DOI: 10.1093/oxfordjournals.rpd.a032400
  33. R. L. Kathren et al., “Distribution of Plutonium and Americium in human lungs and lymph nodes and relationship to smoking status,” Radiat. Prot. Dosim., vol. 48, no. 4, pp. 307 – 315, Aug. 1993.
    DOI: 10.1093/oxfordjournals.rpd.a081878
  34. A. S. Goldin, P. J. Magno, F. Geiger, M. L. Janower, “Radionuclides in autopsy samples from thorotrast patients,” Health Phys., vol. 22, no. 5, pp. 471 – 482, May 1972.
    DOI: 10.1097/00004032-197205000-00006
    PMid: 5024730
  35. L. F. Mausner, “Inhalation exposures at a thorium refinery,” Health Phys., vol. 42, no. 2, pp. 231 – 236, Feb. 1982.
    PMid: 7068387
  36. A. T. Keane, A. P. Polednak, “Retention of uranium in the chest: implications of findings in vivo and post-mortem,” Health Phys.,vol. 44, suppl. 1, pp. 391 – 402, Jan. 1983.
    DOI: 10.1097/00004032-198306001-00037
    PMid: 6862916
  37. N. P. Singh, D. D. Bennett, M. E. Wrenn, G. Saccomanno, “Concentrations of α-emitting isotopes of U and Th in uranium miners’ and millers’ tissues,” Health Phys., vol. 53, no. 3, pp. 261 – 265, Sep. 1987.
    DOI: 10.1097/00004032-198709000-00005
    PMid: 3623915

Medical Physics


A. Topi et al.

Pages: 149–153

DOI: 10.21175/RadProc.2018.32

Charged particle therapy is a precise radiotherapy method for the treatment of solid tumors. This method can deliver conformal dose distributions minimizing damage to healthy tissues thanks to its characteristic dose profile. However, the steep dose profile of charged particle beams (due to the Bragg peak) can result in over- or under-dosage in critical regions. Monitoring the range of the charged particles is therefore highly desirable. In this study, we use a planar in-beam PET system for the range verification of pencil beams in proton therapy. The planar geometry of the DoPET system is advantageous because it can be used online, i.e., during treatment. In the particle therapy community, the Monte Carlo (MC) codes are widely used to evaluate the radiation transport and interaction with matter. For this reason, the FLUKA MC code was used to simulate the experimental conditions of irradiations performed at the Cyclotron Centre Bronowice (CCB) proton therapy center in Krakow (PL). 130MeV pencil beams were delivered on phantoms mimicking human tissues. Different acquisitions are analyzed and compared with the MC predictions. The image reconstruction for experimental data and simulation is based on the Maximum Likelihood Estimation Method (MLEM) algorithm. A special focus in the paper will be on the validation of the PET detector response for activity range verification.
  1. D. Schulz-Ertner, H. Tsuji, “Particle radiation therapy using proton and heavier ion beams,” J. Clin. Oncol., no. 25, no. 8, pp. 953 – 964, Mar. 2007.
    DOI: 10.1200/JCO.2006.09.7816
    PMid: 17350944
  2. A. Knopf, A. Lomax, “In vivo proton range monitoring: a review,” Phys. Med. Biol., vol. 58, no. 15, pp. R131 – R160, Aug. 2013.
    DOI: 10.1088/0031-9155/58/15/R131
    PMid: 23863203
  3. X. Zhu, G. El Fahkri, “Proton therapy verification with PET imaging,” Theranostics, no. 3, no. 10, pp. 731 – 740, Sep. 2013.
    DOI: 10.7150/thno.5162
    PMid: 24312147
    PMCid: PMC3840408
  4. A. Del Guerra et al., “Positron emission tomography: its 65 years,” Riv. Nuovo Cim., no. 39, no. 4, pp. 155 – 223, Apr. 2016.
    DOI: 10.1393/ncr/i2016-10122-6
  5. K. Parodi et al., “In-beam PET measurements of b+ radioactivity induced by proton beams,” Phys. Med. Biol., vol. 47, no. 1, pp. 21 – 36, Jan. 2002.
    DOI: 10.1088/0031-9155/47/1/302
    PMid: 11814225
  6. G. Sportelli et al., “First full-beam PET acquisitions in proton therapy with a modular dual-head dedicated system,” Phys. Med. Biol., no. 59, vol. 1, pp. 43 – 60, Jan. 2013.
    DOI: 10.1088/0031-9155/59/1/43
    PMid: 24321855
  7. N. Camarlinghi et al., “An in-beam PET system for monitoring ion-beam therapy: test on phantoms using clinical 62 MeV protons,” J. Instrum., vol. 9, no. 4, C04005, Apr. 2014.
    DOI: 10.1088/1748-0221/9/04/C04005
  8. L. Brombal et al., “Proton therapy treatment monitoring with in-beam PET: Investigating space and time activity distributions,” Nucl. Instrum. Methods Phys. Res. A, vol. 861, pp. 71 - 76, 2017.
    DOI: 10.1016/j.nima.2017.05.002
  9. S. Helmbrecht et al., “In-beam PET at clinical proton beams with pile-up rejection”, Zeitscrift für Medicinische Physik, vol. 27, pp. 202-217, 2017
  10. S. Moehrs et al., “Multi-ray-based system matrix generation for 3D PET reconstruction,” Phys. Med. Biol., vol. 53, no. 23, pp. 6925 – 6945, Dec. 2008.
    DOI: 10.1088/00031-9155/53/23/018
    PMid: 19001696
    DOI: 10.1016/j.zemedi.2016.07.003
  11. S. Muraro et al., “Proton therapy treatment monitoring with the DoPET system: Activity range, positron emitters evaluation and comparison with Monte Carlo predictions,” J. Instrum., vol. 12, C12026, Dec. 2017.
    DOI: 10.1088/1748-0221/12/12/C12026
  12. A. Ferrari, P. Sala, A. Fassò, J. Ranft, FLUKA: A Multi-Particle Transport Code, Rep. CERN-2005-10, INFN/TC_05/11, SLAC-R-773, CERN, INFN, SLAC, Geneva, Switzerland, 2005.
    Retrieved from: https://www.slac.stanford.edu/pubs/slacreports/reports16/slac-r-773.pdf;
    Retrieved on: May 12, 2018
  13. T. T. Boehlen et al., “The FLUKA code: developments and challenges for high energy and medicalapplications,” Nucl. Data Sheets, vol. 120, pp. 211 – 214, Jun. 2014.
    DOI: 10.1016/j.nds.2014.07.049
  14. G. Battistoni et al., “The FLUKA code: an accurate simulation Tool for Particle Therapy,” Front. Oncol.,vol. 6, no. 116, May 2016.
    DOI: 10.3389/fonc.2016.00116
    PMid: 27242956
    PMCid: PMC4863153
  15. V. Rosso et al., “A new PET prototype for proton therapy: Comparison of data and Monte Carlo simulation, J. Intrsum.,vol. 8, C03021, Mar. 2013.
    DOI: 10.1088/1748-0221/8/03/C03021
  16. A. Kraan et al., “Online monitoring for proton therapy: A real-time procedure using a planar PET system,” Nucl. Instrum. Methods Phys. Res. A, vol. 786, pp. 120 – 126, Jun. 2015.
    DOI: 10.1016/j.nima. 2015.03.059


P.A. Sharagin, E.A. Shishkina, E.I. Tolstykh, A.Yu. Volchkova, M.A. Smith, M.O. Degteva

Pages: 154–158

DOI: 10.21175/RadProc.2018.33

The Techa River (the Urals, Russia) was heavily contaminated due to the release of radionuclides from the Mayak Production Association. The radioactive releases included bone-seeking beta-emitters such as 90Sr and 89Sr that contribute to doses to bone marrow. Moreover, 90Sr is a long-lived isotope, the uptake of which leads to a chronic bone marrow exposure known to result in an increased risk of leukemias. Ongoing epidemiological studies of the long-term effects of chronic radiation exposure are being performed for the Techa River Cohort members. Radiation dosimetry is a part of this study, of which, the internal dose estimates for active bone marrow exposed to beta emission of Sr isotopes incorporated in calcified tissue is an important component. Internal dose calculations, which are based on electron-photon transport simulations, require geometrical descriptions of bone shapes and bone microstructures of the main hematopoietic sites of the human skeleton (ribs, vertebrae, pelvic bones, femur, humeri, bones of the skull, sternum, clavicle and scapula). For this purpose, the parametric approach for modeling bone geometry was elaborated. The proposed approach can be used to segment and define each of the bone sites as simple geometric shapes for which parameters can be derived. The aim of the paper is to present the principles of bone segmentation. Dose factors that convert the activity concentration of bone-seeking radionuclides into a corresponding bone marrow dose rate were calculated for each segment. The calculations were done with MCNP6. The bone segmentation allows optimizing the size of the computational phantom (in terms of voxel number), substituting the complex–shaped bone model with a set of simple stylized phantoms and taking into account the heterogeneity of bone microstructure.
  1. M. O. Degteva, N. B. Shagina, M. I. Vorobiova, L. R. Anspaugh, B. A. Napier, “ Reevaluation of waterborne releases of radioactive materials from the Mayak Production Association into the Techa River in 1949-1951,” Health Phys., vol. 102, no. 1, pp. 25 – 38, Jan. 2012.
    DOI: 10.1097/HP.0b013e318228159a
    PMid: 22134076
  2. L. Yu. Krestinina et al., “Leukaemia incidence in the Techa River Cohort: 1953-2007,” Brit. J. Cancer, vol. 109, no. 11, pp. 2886 – 2893, Nov. 2013.
    DOI: 10.1038/bjc.2013.614
    PMid: 24129230
    PMCid: PMC3844904
  3. M. Hough et al., “An image-based skeletal dosimetry model for the ICRP reference adult male – internal electron sources,” Phys. Med. Biol.,vol. 56, no. 8, pp. 2309 – 2346, Apr. 2011.
    DOI: 10.1088/0031-9155/56/8/001
    PMid: 21427487
    PMCid: PMC3942888
  4. F. W. Spiers et al., “Mean skeletal dose factors for beta-particle emitters in human bone: Part I: Volume-seeking radionuclides,” Brit. J. Radiol., vol. 51, no. 608, pp. 622 – 627, Aug. 1978.
    DOI: 10.1259/0007-1285-51-608-622
    PMid: 678757
  5. V. I. Zalyapin et al., “A parametric stochastic model of bone geometry,” Bull. South Ural State University, Ser. Mathematical Modelling, Programming & Computer Software (SUSU MMCS), vol. 11, no. 2, Chelyabinsk, Russia, Jun. 2018.
    DOI: 10.14529/mmp180204
  6. A. Yu. Volchkova et. al., Effect of the Shape of the Bone on the Power of the Doses in the Bone Marrow of a Person. Materials of the VI International Scientifc and Practical Conference, Chelyabinsk, Russia, 2016, pp 36 -41. (in Russian).
    Retrieved on: Nov 9, 2016
  7. The ICRP computational framework for internal dose assessment for reference adults: specific absorbed fractions. ICRP Publication 133. Ann. ICRP 45(2), pp 1–74; 2016.
    Retrieved from: http://www.icrp.org/publication.asp?id=ICRP%20Publication%20133
    PMCid: PMC3672237
  8. B. A. Campbell et al., “Distribution Atlas of Proliferating Bone Marrow in Non-Small Cell Lung Cancer Patients Measured by FLT-PET/CT Imaging. With Potential Applicability in Radiation Therapy Planning,” Int. J. Radiat. Oncol. Biol. Phys., vol. 92, no. 5, pp. 1035 – 1043, Aug. 2015.
    DOI: 10.1016/j.ijrobp.2015.04.027
    PMid: 26194679
  9. E. A. Shishkina et al., “Parametric stochastic model of bone structures to be used in computational dosimetric phantoms of human skeleton,” in Proc. 6th Int. Conf. Radiation and Applications in Various Fields of Research (RAD 2018), Ohrid, Macedonia, 2018, accepted for publication.
  10. N. B. Shagina et al., “Age and gender specific biokinetic model for strontium in humans”. Radiol Prot., vol. 35; no 1, pp. 87-127, Jan 2015.
    DOI: 10.1088/0952-4746/35/1/87
    PMid: 25574605



Andrea Bonfanti, Elena Ciortan, Luciano Abate, Ruggero Luigi Baroni, Serena Padelli, Roberto Moltrasi

Pages: 159–162

DOI: 10.21175/RadProc.2018.34

The objective was to compare the contrast enhanced computed tomography (CT) “LOW DOSE” protocol for thoraco-abdominal scans, with the standard CT protocol for oncologic follow up. We analyzed these two different imaging techniques and the overall radiation dose in order to determine benefits in terms of diagnosis. We included 50 patients where oncologic follow up included a triphasic thoraco-abdominal CT for staging of liver disease. Eligibility criteria were the medical indication for a contrast-enhanced thoraco-abdominal CT as part of an oncologic follow up (breast cancer, hepatocarcinoma, neuroendocrine tumors, kidney cancer and prostatic cancer) and the availability of previous enhanced CT scans performed over the past year of follow up. The LOW DOSE protocol for triphasic CT in oncologic follow up permits saving of effective dose up to 50% (27% on average) for each scan and an overall saving of up to 40% (15% on average) for complete procedure in the normal BMI group. The LOW DOSE protocol was also effective in the diagnosis of thromboembolic disease. All the scans from the LOW DOSE CT protocol were analyzed by radiologists, all with at least 10 years of experience, unaware of the introduction of the protocol – there were no reported differences or difficulties in diagnosis compared to the standard CT protocol.
  1. Recommendations of the International Commission on Radiological Protection, ICRP Publication 103, Ottawa, Canada, 2007.
    Retrieved from: http://www.icrp.org/docs/ICRP_Publication_103-Annals_of_the_ICRP_37(2-4)-Free_extract.pdf;
    Retrieved on: Jun. 19, 2018
  2. European Commission. (Feb. 18, 2000). European guidelines of quality criteria for computed tomography.
    Retrieved from: https://publications.europa.eu/en/publication-detail/-/publication/d229c9e1-a967-49de-b169-59ee68605f1a;
    Retrieved on: Jun. 19, 2018
  3. Basic anatomical and physiological data for use in radiological protection, ICRP Publication 89, ICRP, Ottawa, Canada, 2002.
    PMid: 14506981
  4. Relative biological effectiveness (RBE), quality factor (Q), and radiation weighting factor (wR), ICRP Publication 92, ICRP, Ottawa, Canada, 2002.
    PMid: 14614921
  5. Low dose extrapolation of radiation-related cancer risk, ICRP Publication 99, ICRP, Ottawa, Canada, 2005.
    DOI: 10.1016/j.icrp.2005.11.002
    PMid: 16782497
  6. Assessing dose of the representative person for the purpose of radiation protection of the public and the optimisation of radiological protection: Broadening the process,ICRP Publication 101, ICRP, Ottawa, Canada, 2006.
    DOI: 10.1016/j.icrp.2006.09.003
    PMid: 17174713
  7. G. Starck, L. Lonn, et al., “A method to obtain the same levels of CT image noise for patients of various size, to minimize radiation dose,” Br. J. Radiol., vol. 75, no. 890, pp. 140 – 150, Feb. 2002.
    DOI: 10.1259/bjr.75.890.750140
    PMid: 11893638
  8. C. S. Alvin, J. L. Holly et al., “Innovation in CT Dose Reduction Strategy: Application of the Adaptive Statistical Iterative Reconstruction Algorithm,” Am. J. Roentgenol., vol. 194, no. 1, pp. 191 – 199, Jan. 2010.
    DOI: 10.2214/AJR.09.2953
    PMid: 20028923


Elisaveta Petrova

Pages: 163–165

DOI: 10.21175/RadProc.2018.35

The aim of the study was to present the epidemiological characteristics, new diagnostics trends and prevention of the pulmonary diseases related to dust (PDD) in Bulgaria. Retrospective epidemiological study during the period 1980-2003 y. was done. A new cross sectional case control study of workers exposed to high concentration mineral dust and non-exposed control group in 2003 year were performed. Non patrametric, correlation analysis and linear statidstical analysis were performed. An SPSS statistical package was used. Epidemiological trends of different types of pneumoconiosis, and 11 years study of tendencies in malignant mesothelioma in the country were analyzed. A prognosis of the appearance of PDD during the future 10 – 30 years was done. A comparison between chest radiographic images and HRCT amongst pneumoconiotic patients was done. Image/functional constellations for diagnostic purposes were created. The following conclusions can be made: 1. PDD play a leading epidemiological role amongst occupational diseases in Bulgaria. 2. An appearance of pneumoconiosis and asbestos-related malignant mesothelioma in the next 10 – 20 years was expected. 3. HRCT, as well as constellation HRCT/VC, FVC and FEF50% could be more correct diagnostic methods in pneumoconioses.
  1. Е. Петрова, “Късни форми на силикоза и силикотуберкулоза,” Канд. дисертация, Медицински Университет, София, 1988. (E. Petrova, “Late forms of silicosis and silicotuberculosis,” Ph.D. dissertation, Medical University, Sofia, 1988.)
  2. A. d’ Mannetje et al., “Exposure-response analysis and risk assessment for silica and silicosis mortality in a pooled analysis of six cohorts,” Occup. Environ. Med., vol. 59, no. 11, pp. 723 – 728, Nov. 2002.
    DOI: 10.1136/oem.59.11.723
    PMid: PMC1740236
  3. Еarly Detection of Occupational Diseases, Id. 924154211X, WHO, Geneva, Switzerland, 1986.
    Retrieved from: http://apps.who.int/iris/bitstream/handle/10665/37912/924154211X.pdf?sequence=1&isAllowed=y;
    Retrieved on: Aug. 15, 2018
  4. T. Kraus, H. J. Raithel, K. G.Hering, “Evaluation and classification of high-resolution computed tomographic findings in patients with pneumoconiosis,” Int. Arch. Occup. Environ. Health, vol. 68, no. 4, pp. 240 – 254, May 1996.
    DOI: 10.1007/BF00381436
  5. NIOSH Hazard Review: Health Effects of Occupational Exposure to Respirable Crystalline Silica, DHHS (NIOSH) Publication No. 2002-129, NIOSH, Cincinnati (OH), USA, 2002.
    Retrieved from: https://www.cdc.gov/niosh/docs/2002-129/pdfs/2002-129.pdf?id=10.26616/NIOSHPUB2002129;
    Retrieved on: Aug. 15, 2018
  6. L. Olivetti et al., “Anatomo-radiologic definition of minimal interstitial silicosis and diagnostic contribution of high-resolution computerized tomography,” Radiol. Med., vol. 85, no. 5, pp. 600 – 605, Jun. 1993.
  7. D. Sherson, “Silicosis in the twenty first century,” Occup. Environ. Med., vol. 59, no. 11, pp. 721 – 722, Nov. 2002.
    DOI: 10.1136/oem.59.11.721
    PMid: 12409528
    PMCid: PMC1740242

Nuclear Medicine


Fulger Ciupagea, Gabriela Rosca Fartat, Marina Anghene, Nuta Niculaie, Anca Zamfirescu, Cristina Petroiu, Costin Ghioca

Pages: 166–168

DOI: 10.21175/RadProc.2018.36

Radioactive sources used for therapy can cause very serious exposures if they are mislaid or misused. The aim of this paper is to present the measures taken in order to ensure the radiation protection in the handling of a deceased person containing I-131. The prominent pathways of exposure for occupational exposed personnel, medical exposure (family, friends) and public exposure (third person e.q. (the mortuary car driver, priest) were assessed. According to these specific conditions, the time after which the body can be taken over by the family was calculated and the doses in the handling of the deceased person, embalming, transport and burial ceremony were evaluated for each category of people. Also, the compliance with national legislation and European recommendations is discussed.
  1. The 2007 Recommendations of the International Commission on Radiological Protection, ICRP Publication 103, ICRP, Ottawa, Canada, 2007.
    Retrieved from: http://www.icrp.org/docs/ICRP_Publication_103-Annals_of_the_ICRP_37(2-4)-Free_extract.pdf;
    Retrieved on: Jun. 14, 2018
  2. Radiological Protection in Medicine, ICRP Publication 105, ICRP, Ottawa, Canada, 2007.
    DOI: 10.1016/j.icrp.2008.08.001
    PMid: 18762065
  3. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards, General Safety Requirements Part 3, IAEA, Vienna, Austria, 2014, p. 24.
    Retrieved from: https://www-pub.iaea.org/MTCD/publications/PDF/Pub1578_web-57265295.pdf;
    Retrieved on: Jun. 14, 2018
  4. The Council of the European Union. (Jun. 30, 1997). Council Directive 97/43/Euratom on health protection of individuals against the dangers of ionizing radiation in relation to medical exposure, and repealing Directive 84/466/Euratom.
    Retrieved from: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A31997L0043;
    Retrieved on: Jun. 30, 2018
  5. Ministry of Health and National Commission for Nuclear Control Activities. (Jun. 25, 2002). No. 285/79/2002 Norms on Radiation Protection in Medical Exposures.
    Retrieved from: http://www.cncan.ro/assets/Legislatie/Norms/Norms-on-radiation-protection-of-individuals-in-NSR-04.pdf;
    Retrieved on: Jun. 12, 2018
  6. Comisia Nationalã Pentru Controlul Activitãtilor Nucleare. (Feb. 15, 2005). 358/2004 ordin privind aprobarea normelor de securitate radiologicã pentru practica de medicinã nuclearã. (National Commission for the Control of Nuclear Activities. (Feb. 15, 2005). No. 358 Regulation on radiation safety in nuclear medicine.)
    Retrieved from: http://www.dsclex.ro/legislatie/2005/februarie2005/mo2005_139.htm;
    Retrieved on: Jun. 30, 2018
  7. P. B. Zanzonico, J. A. Siegel, J. St German, “A generalized algorithm for determining the time of release and duration of post release precautions radionuclide therapy,” Health Phys., vol. 78, no. 6, pp. 648 – 659, Jun. 2000.
    DOI: 10.1097/00004032-200006000-00007
    PMid: 10832924
  8. Management Radionuclide Therapy Patient, NCRP Report No. 155, NCRP, Bethesda (MD), USA, 2006.
    Retrieved from: http://www.ncrppublications.org/Reports/155;
    Retrieved on: Jun. 30, 2018



Sibel Karaca, Hamit Başaran

Pages: 169–173

DOI: 10.21175/RadProc.2018.37

The aim of the study is to evaluate the point doses measured by different parameters at various depths with MVCT in the Tomotherapy Hi- Art (HT) treatment unit. HT works in two modes: visual modes and therapy modes. The MVCT images are taken in the visual mode. The user can choose the scan length and image pitch value in the visual mode. The system has pitch values called fine, normal and coarse. When the same volume is scanned during the gentry rotation, the scan times of fine, normal, and coarse modes are different from one another. Cheese Phantom is used to evaluate the point doses. The measured values ranged from 0.64 to 2.67 cGy with an average dose of 1.40cGy. The lowest MVCT dose is found when 7 slices are scanned with a depth of 20 cm for 51 seconds. The highest MVCT dose is found when 17 slices are scanned with a depth of 15 cm for 101 seconds. The measured values are the highest when the fine mode is selected with low depth and high slice. The IGRT method is used before each treatment and can be used more than once if necessary. Therefore, the right mode selection can prevent taking unnecessary doses during MVCT.
  1. P. Yadav, R.Tolakanahalli, Y.Rong, B. R. Paliwal, “The effect and stability ofMVCT images on adaptive TomoTherapy,” J. Appl. Clin. Med. Phys., vol. 11, no. 4, pp. 4 – 14, Jul. 2010.
    DOI: 10.1120/jacmp.v11i4.3229
    PMid: 21081878
  2. L. Meeks et al., “Performance characterization of megavoltage computed tomography imaging on a helical tomotherapy unit,” Med. Phys., vol. 32, no. 8, pp. 2673 – 2681, Aug. 2005.
    DOI: 10.1118/1.1990289
    PMid: 1619379
  3. T. R. Mackie et al., “Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy,” Med. Phys., vol. 20, no. 6, pp. 1709 – 1719, Nov-Dec. 1993.
    DOI: 10.1118/1.596958
    PMid: 8309444
  4. T. R. Mackie et al., “Image guidance for precise conformal radiotherapy,” Int. J. Radiat. Oncol. Biol. Phys., vol. 56, no. 1, pp. 89 – 105, May 2003.
    DOI: 10.1016/S0360-3016(03)00090-7
    PMid: 12694827
  5. S. M. Goddu et al., “Enhanced efficiency in helical tomotherapy quality assurance using a custom-designed water-equivalent phantom,” Med. Bio., vol. 54, no. 19, pp. 5663 – 5674, Oct. 2009.
    DOI: 10.1088/0031-9155/54/19/001
    PMid: 19724101
  6. F. Crop, A. Bernard, N.Reynaert, Improving dose calculations on tomotherapy MVCT images,” J. Appl. Clin. Med. Phys., vol. 13, no. 6, pp. 241 – 253, Sep. 2012.
    DOI: 10.1120/jacmp.v13i6.3986
    PMid: 23149791
  7. L. Minglu, Y. Wang, X. Liao, “Computed Tomography Dose Index Measurement for Hi-ART Megavoltage Helical CT,” Radiat. Prot. Dosim., vol. 171, no. 3, pp. 370 – 374, Nov. 2016.
    DOI: 10.1093/rpd/ncv393
  8. R. Jeraj, T. R. Mackie, J. Balog et al., “Radiation characteristics of helical tomotherapy,” Med. Phys., vol. 31, no. 2, pp. 396 – 404, Feb. 2004.
    DOI: 10.1118/1.1639148
    PMid: 15000626
  9. S. Yartsev, T. Kron, D. Van Dyk, “Tomotherapy as a tool in image-guided radiation therapy (IGRT): Theoretical and technological aspects,” Biomed. Imaging Interv. J., vol. 3, no. 1, e16, Jan. 2007.
    DOI: 10.2349/biij.3.1.e16
    PMid: 21614257
  10. J. S. Welsh et al., “Clinical implementation of adaptive helical tomotherapy: a unique approach to image-guided intensity modulated radiotherapy,” Tech. Cancer Res. Treat., vol. 5, no. 5, pp. 465 – 479, Oct. 2006.
    DOI: 10.1177/153303460600500503
    PMid: 16981789
  11. J. S. Kim et al., “Development of Video Image-Guided Setup (VIGS) System for Tomotherapy: Preliminary Study,” Prog. Med. Phys., vol. 24, no. 2, pp. 85 – 91, Jun. 2013.
    DOI: 10.14316/pmp.2013.24.2.85
  12. J. P. Mege et al., “Evaluation of MVCT imaging dose levels during helical IGRT: comparison between ion chamber, TLD, and EBT3 films,” J. Appl. Clin. Med. Phys., vol. 17, no. 1, pp. 143 – 157, Jan. 2016.
    DOI: 10.1120/jacmp.v17i1.5774
    PMid: 26894346
  13. P. Kupelian, K. Langen, “Helical tomotherapy: image-guided and adaptive radiotherapy,” Front Radiat. Ther. Oncol., vol. 43, pp. 165 – 180, May 2011.
    DOI: 10.1159/000322420
    PMid: 21625153
  14. S. P. Xu et al., “Measurement and analysis of the imaging dose with megavoltage computed tomography for helical tomotherapy,” Chin. J. Cancer, vol. 28, no. 8, pp. 886 – 889, Aug. 2009.
    DOI: 10.5732/cjc.008.10632
    PMid: 19664339
  15. K. Son et al., “Evaluation of radiation dose to organs during kilovoltage cone-beam computed tomography using Monte Carlo simulation,” J. Appl. Clin. Med. Phys., vol. 15, pp. 295 – 302, Mar. 2014.
    DOI: 10.1120/jacmp.v15i2.4556
    PMid: 24710444
  16. M. J. Murphy et al., “The management of imaging dose during image-guided radiotherapy: report of the AAPM Task Group 75,” Med. Phys., vol. 34, no. 10, pp. 4041 – 4063, Oct. 2007.
    DOI: 10.1118/1.2775667
    PMid: 17985650
  17. P. Alaeiand, E. Spezi, “Imaging dose from cone beam computed tomography in radiation therapy,” Phys. Med., vol. 31, no. 7, pp. 647 – 658, Nov. 2015.
    DOI: 10.1016/j.ejmp.2015.06.003
    PMid: 26148865
  18. A. P. Shah et al., “Patient dose from megavoltage computed tomography imaging,” Int. J. Radiat. Oncol. Biol. Phys., vol. 70, no. 5, pp. 1579 – 1587, Apr. 2008.
    DOI: 10.1016/j.ijrobp.2007.11.048
    PMid: 18234438
  19. A. Bujold et al., “Image-guided radiotherapy: Has it influenced patient outcomes?” Semin. Radiat. Oncol., vol. 22, no. 1, pp. 50 – 61, Jan. 2012.
    DOI: 10.1016/j.semradonc.2011.09.001
    PMid: 22177878
  20. J. Pouliot et al, “Low-dose megavoltage cone-beam CT for radiation therapy,” Int. J. Radiat. Oncol. Biol. Phys., vol. 61, no. 1, pp. 238 – 241, Feb. 2005.
    DOI: 10.1016/j.ijrobp.2004.10.011
    PMid: 15736320
  21. M. K. Islam et al., “Patient dose from kilovoltage cone beam computed tomography imaging in radiation therapy,” Med. Phys.,vol. 33, no. 6, pp. 1573 – 1582, Jun. 2006.
    DOI: 10.1118/1.2198169
    PMid: 16872065
  22. J. Balog, G. Olivera, J. Kapatoes, “Clinical helical tomotherapy commissioning dosimetry,” Med. Phys., vol. 30, no. 12, pp. 3097 – 3106, Dec. 2003.
    DOI: 10.1118/1.1625444
    PMid: 14713076
  23. L. J. Forrest et al., “The utility of megavoltage computed tomography images from a helical tomotherapy system for setup verification purposes,” Int. J. Radiat. Oncol. Biol. Phys.,vol. 60, no. 5, pp. 1639 – 1644, Dec.2004.
    DOI: 10.1016/j.ijrobp.2004.08.016
    PMid: 15590196
  24. M. Chen, E. Chao, W. Lu, “Quantitative characterization of tomotherapy MVCT dosimetry,” Med. Dosim., vol. 38, no. 3 pp. 280 – 286, 2013.
    DOI: 10.1016/j.meddos.2013.02.009
    PMid: 23558147
  25. S. T. Schindera et al., “Effect of patient size on radiation dose for abdominal MDCT with automatic tube current modulation: phantom study,” Am. J. Roentgenol., vol. 190, no. 2, pp. 344, Feb. 2008.
    DOI: 10.2214/AJR.07.2891
    PMid: 18212190

Environmental Chemistry


Tufic Madi Filho, Elson Barros Ferreira, Maria da Conceição Costa Pereira, José Roberto Berretta

Pages: 174–180

DOI: 10.21175/RadProc.2018.38

Tobacco addiction has been mentioned as a leading cause of preventable illnesses and premature disability since tobacco smoking is the main cause of lung cancer and one of the factors that most contribute to the occurrence of heart diseases, among others. The herbaceous species Nicotiana tabacum is a plant of the solanaceae family used for tobacco production. Some authors have conducted research about heavy metals and the toxicity of tobacco. It is, frequently, found in low concentrations in the ground, superficial and underground waters, even though they do not have environmental anthropogenic contributions. However, with the increase of industrial activities and mining together with the agrochemical use of contaminated organic and inorganic fertilizers, an alteration of the geochemical cycle occurs. As a consequence, the natural flow of that materials increases and release into the biosphere, where they are often accumulated in the superior layer of the ground, accessible to the roots of the plants. During planting and plant development, fertilizers and insecticides, including organochlorines and organophosphates, are used; consequently, the smoke from cigarette smoking presents various toxic substances, including heavy metals, such as Chromium (Cr), Manganese (Mn) and Antimony (Sb). Elements studied in this work. The procedures for the preparation of the samples were carried out in our laboratories and submitted to irradiation with thermal neutrons at IPEN/CNEN-SP, in the IEA-R1 research reactor. The irradiated material was, then, analyzed by gamma spectrometry, using a high purity germanium detector (HPGe).
  1. A. C. P. R. Marques et al., “Consenso sobre o tratamento da dependência de nicotina,” Rev. Bras. Psiquiatr., vol. 23, no. 4, pp. 200 – 214, Dec. 2001. (A. C. P. R. Marques et al., “Consensus on the treatement of nicotine addiction,” Braz. J. Psyciatry, vol. 23, no. 4, pp. 200 – 214, Dec. 2001.)
    DOI: 10.1590/S1516-44462001000400007
  2. M. C. Malcon, A. M. B. Menezes, M. Chatkin, “Prevalência e fatores de risco para tabagismo em adolescentes,” Rev. Saúde Pública, vol. 37, no. 1, pp. 1 – 7, Feb. 2003. (M. C. Malcon, A. M. B. Menezes, M. Chatkin, “Prevalence and risk factors for smoking among adolescents,” Rev. Saúde Pública, vol. 37, no. 1, pp. 1 – 7, Feb. 2003.)
    DOI: 10.1590/S0034-89102003000100003
    PMid: 12488914
  3. V. Carvalho, “A força e o horror do cigarro,” Jornal Brasileiro Ecológico, vol. 2, no. 24, p. 19, 2004. (V. Carvalho, “The strenght and horror of cigarettes,” Jornal Brasileiro Ecológico, vol. 2, no. 24, p. 19, 2004.)
  4. C. Baird, Química ambiental, 2. ed., Porto Alegre, Brasil: Bookman, 2002. (C. Baird, Environmental Chemistry, 2nd ed., Porto Alegre, Brazil: Bookman, 2002.)
  5. S. Landsberg, D. Wu., “The impact of heavy metals from environmental tobacco smoke on indoor air quality as determined by Compton suppression neutron activation analysis,” Sci. Total Environ., vol. 173-174, pp. 323 – 324, Dec. 1995.
    DOI: 10.1016/0048-9697(95)04755-7
  6. Z. Harakeh et al., “Imitation of cigarette smoking: An experimental study on smoking in a naturalistic setting,” Drug Alcohol Depend., vol. 85, n. 2-3, pp. 199 – 206, 2007.
    DOI: 10.1016/j.drugalcdep.2006.06.006
  7. V. B. M. Silva, M. E. Pereira, “Parâmetros hematológicos e toxicológicos em amostras de sangue de doadores fumantes,” Rev. Bras. Anál. Clín., vol. 37, supl. 2, pp. 95 – 96, 2005. (V. B. M. Silva, M. E. Pereira, “Haematological and toxicological parameters in donor blood sampler from smokers,” Rev. Bras. Anál. Clín., vol. 37, supp. 2, pp. 95 – 96, 2005.)
    Retrieved from: http://www.rbac.org.br/wp-content/uploads/2016/08/RBAC_Vol.37_n2-completa.pdf;
    Retrieved on: Jul. 15, 2018
  8. S. C. Correa et al., Anuário brasileiro do fumo, Santa Cruz do Sul, Brasil: Editora Gazeta, 2003. (S. C. Correa et al., Brazilian Tobacco Yearbook, Santa Cruz do Sul, Brazil: Editoria Gazeta, 2003.)
  9. S. C. Correa et al., Anuário brasileiro do fumo, Santa Cruz do Sul, Brasil: Editora Gazeta, 2005. (S. C. Correa et al., Brazilian Tobacco Yearbook, Santa Cruz do Sul, Brazil: Editoria Gazeta, 2005.)
  10. A. Specht et al., “Ocorrência de Rachiplusia nu (Guenée) (Lepidoptera: Noctuidae) em Fumo (Nicotiana tabacum L.) no Rio Grande do Sul, Brazil,” Neotrop. Entomol., vol. 35, no. 5, pp. 705 – 706, Sep-Oct. 2006. (A. Specht et al., “Occurence of Rachiplusia nu (Guenée) (Lepidoptera: Noctuidae) in Smoke (Nicotiana tabacum L.) in Rio Grande do Sul, Brazil,” Neotrop. Entomol., vol. 35, no. 5, pp. 705 – 706, Sep-Oct. 2006.)
    DOI: 10.1590/S1519-566X2006000500020
  11. R. I. Neumann, Anuário brasileiro do fumo, Santa Cruz do Sul, Brasil: Editora Gazeta, 2000. (R. I. Neumann, Brazilian Tobacco Yearbook, Santa Cruz do Sul, Brazil: Editora Gazeta, 2000.)
  12. S. Oga, Fundamentos de Toxicologia, 2. ed., São Paulo, Brasil: Atheneu, 2003. (S. Oga, Fundamentals of Toxicology, 2nd ed., Sao Paulo, Brazil: Atheneu, 2003.)
  13. P. Atkins, L. Jones, “Os elementos,” em Princípios de química, Porto Alegre, Brasil: Bookman, 2001, cap. 15-16, pp. 79 – 213. (P. Atkins, L. Jones, “The elements,” in Principles of Chemistry, Porto Alegre, Brazil: Bookman, 2001, ch. 15-16, pp. 79 – 213.)
    Retrieved from: https://pt.slideshare.net/CinaraTanhoteSousa/atkins-jones-princpios-de-qumica-questionando-a-vida-moderna-e-o-meio-ambiente
    Retrieved on: Jun. 19, 2018
  14. C. P. Florêncio, E. Ribeiro Filho,“Geoquímica do bromo em halitas da sub–bacia evaporítica de Maceió,” Rev. Geol., vol. 11, pp. 5 – 14, 1998. (C. P. Florêncio, E. Ribeiro Filho, “Geochemistry of bromine in halites from Maceió sub-basin,” Rev. Geol., vol. 11, pp. 5 – 14, 1998.)
    Retrieved from: http://www.repositorio.ufc.br/bitstream/riufc/14990/1/1998_art_cpflorencio.pdf
    Retrieved on: Jun. 15, 2018
  15. I. Athié et al.,“Resistência à fosfina de insetos de grãos armazenados determinada por cromatografia gasosa,” Braz. J. Food Technol., no. 57, p. 43, 2001. (] I. Athié et al., “Phosphate resistance of healthy grain insects by gas chromatography,” Braz. J. Food Technol., no. 57, p. 43, 2001.)
  16. L. M. Lagos, “Methyl bromide, brief description of its toxicology as a basis for occupational health surveillance,” Ciência & Trabajo, no. 26, pp. 182 – 185, 2007.
    Retrieved from: https://docplayer.es/82757121-Editorial-plaguicidas-a-paso-lento-editorial-ciencia-trabajo.html
    Retrieved on: Jun. 19, 2018
  17. R. D. Arasasingham, T. C. Bruice, “Reaction of hydroxide Ion with manganese(III) tetramesitylporphyrin and the oxidation states of manganese tetramesitylporphyrins,” J. Biol. Inorganic Chem., vol. 29, no. 7, pp. 1422 – 1427, Apr. 1990.
    DOI: 10.1021/ic00332a028
  18. S. M. D. Erthal, “Síntese e caracterização de compostos de coordenação de ferro e manganês como modelos bioinorgânicos,” Tese de Doutorado, Universidade Federal de Santa Catarina, Florianópolis, Brasil, 1994. (S. M. D. Erthal, “Sythesis and characterization of iron and manganese coordination compounds as bioinorganic models,” Ph.D. dissertation, Federal University of Santa Catarina, Florianópolis, Brazil, 1994.)
  19. D. J. Eatough et al., “Chemical composition of environmental tobacco smoke. 1. Gas-Phase acids and bases,” Environ. Sci. Technol., vol. 23, no. 6, pp. 679 – 687, Jun. 1989.
    DOI: 10.1021/es00064a006
  20. V. E. Etges, “Ensaio - O impacto da cultura do tabaco no ecossistema e na saúde humana,” Textual, vol. 1, no. 1, 2002. (V. E. Etges, “Essay – The impact of tobacco growing on the ecosystem and on human health,” Textual, vol. 1, no. 1, 2002.)
  21. S. Rath et al., “Antimoniais empregados no tratamento de leishmaniose,” Quím. Nova, vol. 26, no. 4, pp. 550 – 555, Jul-Ago. 2003. (S. Rath et al., “Antimony agents used in the treatment of leishmaniasis,” Quím. Nova, vol. 26, no. 4, pp. 550 – 555, Jul-Aug. 2003.)
    DOI: 10.1590/S0100-40422003000400018
  22. B. J. B. Nyarko, E. H. K. Akaho, Y. Serfor-Arman, “Application of NAA standardization methods using a low power research reactor,” J. Radioanal. Nucl. Chem., vol. 257, no. 2, pp. 361 – 366, Aug. 2003.
    DOI: 10.1023/A:1024744131848
  23. S. Roth et al., “Determination of k0- and Q0- factor of short-lived nuclides,” J. Radioanal. Nucl. Chem, vol. 169, no. 1, pp. 159 – 175, Mar. 1993.
    DOI: 10.1007/BF02046791
  24. N. F. Matheus,“Determinação de metais em Eucalyptus grandis, adubado com biossólido, utilizando a técnica de Análise por Ativação com Nêutrons,” dissertação de maestrado, Universidade Cruzeiro do Sul, São Paulo, Brasil, 2007. (N. F. Matheus, “Determination of metals in Eucaliptus grandis, fertilized with biosolid, using a thechnique of Analysis by Activation with Neutrons,” M.Sc. dissertation, University Cruzeiro do Sul, Sao Paulo, Brazil, 2007.)
  25. G. F. Knoll, Radiation detection and measurement, 2nd ed., Hoboken (NJ), USA: John Wiley & Sons. 1986.


J.F. Facetti-Masulli, Peter Kump, Virginia Romero

Pages: 181–186

DOI: 10.21175/RadProc.2018.39

Incompatible elements (IE) from the bottom sediments of the Acaray Reservoir in the Alto Paraná region of Eastern Paraguay were investigated by the EDXRF technique. Most of them are refractory, that is, they maintain their primary relationships and are transferred almost directly into sediments and thus, they are considered as geoindicators. In this regard, IE are of utmost interest in sediments studies. The refractory trace elements analyzed were Y-Rb-Sr-Zr-Nb-Ba-La-Ce-Nd, and the minor elements Ti-Mn-Fe. The analyses were performed with an Am-241 source and an X-ray tube. Samples were taken from six different stations. Like the sediments of the Itaipu Dam, spidergram results show an enrichment of IE and contributions of sedimentary material to the bottom sediments of the Acaray Reservoir.
  1. Balance Hídrico Superficial del Paraguay, Dirección de Meteorología, Asunción, Paraguay, 1992. (Surface Water Balance of Paraguay, Directorate of Meteorology, Asunción, Paraguay, 1992.)
  2. Cartas Nacionales. Hojas SG 21 8;21 7; 21 4;21 3., Direccion Instituto Geográfico Militar, Asunción, Paraguay, 1995. (National Maps. Sheets SG 21 8;21 7; 21 4;21 3., Directorate of the Military Geographical Institute, Asunción, Paraguay, 1995.)
  3. V. J. Fúlfaro, “Geology of Eastern Paraguay,” in Alkaline magmatism in Central-Eastern Paraguay, P. Comin-Chiaramonti, C. Gomes, Eds., Sao Paulo, Brasil: Universidad de S. Paulo Editora, 1996, ch. 1, sec. 1.1, pp. 17 – 29.
  4. Acerca de los ríos Acaray y Jejui. Aspectos Hidrológicos, Informe de Hydroconsult SRL al Ministerio de Obras Públicas, Asunción, Paraguay, 1994. (About the Acaray and Jejui rivers. Hydrological aspects, Report of the Hydroconsult SRL to the Ministry of Public Works, Asunción, Paraguay, 1994.)
  5. J. L. Scroccaro, “Estudio del Transporte de Sólidos para el Embalse de Itaipu,” en Actas de 1er Seminario de la Itaipú Binacional sobre Medio Ambiente, Asunción, Paraguay, 1979, pp. 101 – 113. (J. L. Scroccaro, “Study of the Transport of Solids for the Itaipu Reservoir,” in Proc. 1st Binational Itaipu Seminar on the Environment, Asunción, Paraguay, 1979, pp. 101 – 113.)
  6. J. F. Facetti, “Embalse de Itaipu-Aspectos Limnológicos Partes I & II,” en Actas de 2do Seminario da Itaipú Binacional sobre Meio Ambiente, Foz do Iguazú, Brazil, 1987, pp. 153 – 186. (J. F. Facetti, “Itaipu Reservoir-Limnological Aspects Parts I & II,” in Proc. 2nd Binational Itaipu Seminar on the Environment, Foz do Iguazú, Brazil, 1987, pp. 153 – 186.)
  7. A. V. L. Bittencourt, W. Sanches, “Contribucao ao transporte de sólidos dissolvidos en bacias tributarias do sistema do reservatorio de Itaipu,” en Actas de 2do Seminario da Itaipú Binacional sobre Meio Ambiente, Foz do Iguazú, Brazil, 1987, pp. 207 – 220. (A. V. L. Bittencourt, W. Sanches, “Contribution to the transport of dissolved solids in tributary streams of the Itaipu reservoir system,” in Proc. 2nd Binational Itaipu Seminar on the Environment, Foz do Iguazú, Brazil, 1987, pp. 207 – 220.)
  8. R. A. Ribeiro Filho, M. Petrere Junior, S. F. Benassi, J. M. A. Pereira, “Itaipú Reservoir limnology: eutrophication degree and the horizontal distribution of its limnological variables,” Braz. J. Biol. vol. 71, no. 4, pp. 889 – 902, Nov. 2011.
    DOI: 10.1590/S1519-69842011000500010
  9. J. F. Facetti-Masulli, M. Bordas, “El Modelo de Lewis y el comportamiento térmico del Lago de Itaipu,” Rev. Soc. Cientif. Paraguay,vol. 15, no. 2, pp. 137 – 152, 2010. (J. F. Facetti Masulli, M. Bordas, “The Lewis model and the thermal patterns of the Itaipu Lake,” Rev. Soc. Cientif. Paraguay, vol. 15, no. 2, pp. 137 – 152, 2010.)
  10. T. A. Pagioro, S. M. Thomaz, “Longitudinal patterns of sedimentation in deep monomitic subtropical reservoir of Itaipu (Brazil-Paraguay),” Arch. Für Hydrobiologie, vol. 154, no. 3, pp. 515 – 528, Jul. 2002.
    DOI: 10.1127/archiv-hydrobiol/154/2002/515
  11. F. Flores, J. F. Facetti-Masulli, “Phosphorus availability from bottom sediments of lakes using a nuclear technique,” J. Radioanal. Nucl. Chem., vol. 161, no. 1, pp. 239 – 244, Aug. 1992.
    DOI: 10.1007/BF02034897
  12. B. P. Roser, R. J. Korsch, “Provenance signatures of sandstone-mud stone suites determined using discriminant function analysis of major element data,” Chem. Geol.,vol. 67, no. 1-2, pp. 119 – 139, Jan. 1988.
    DOI: 10.1016/0009-2541(88)90010-1
  13. D. J. Burnett, D. G. Quirk, “Turbidite provenace in the Lower Palaeozoic Manx Group, Isle of Man: implications for the tectonic setting of Eastern Avalonia,” J. Geol. Soc., vol. 158, no. 6, pp. 913 – 924, 2001.
    DOI: 10.1144/0016-764900-205
  14. F. Albaréde, Geochemistry: An Introduction, Cambridge, UK: Cambridge University Press, 2003, ch. 8 sec. 8.3-8.4 pp. 155 – 163, app. A, pp. 207 – 209.
    DOI: 10.1180/0671322
  15. J. F. Facetti-Masulli, P. Kump, Z. Villanueva de Diaz, “Selected trace and minor elements in sediments of Itaipu Dam Reservoir,” Czechoslovak J. Phys., vol. 53, suppl. 1, pp. A209 – A215, Jan. 2003.
    DOI: 10.1007/s10582-003-0027-6
  16. J. F. Facetti-Masulli, P. Kump, Z. Villanueva de Diaz, V. R. de González, “Incompatible elements in bottom sediments of the Itaipu Dam Reservoir by EDXRF,” J. Radioanal. Nucl. Chem., vol. 316, no. 2, pp. 861 – 868, May 2018.
    DOI: 10.1007/s10967-018-5801-9
  17. J. F. Facetti-Masulli, P. Kump, “Selected minor and trace elements from water bodies of Western Paraguay,” J. Radioanal. Nucl. Chem.,vol. 286, no. 2, pp. 441 – 448, Nov. 2010.
    DOI: 10.1007/s10967-010-0775-2
  18. J. F. Facetti-Masulli, F. Flores, P. Kump, “Geochemical studies and elemental contaminants in the Bay of the City of Asunción,” J. Chem. Chem. Eng., vol. 7, no. 11, pp. 1060 – 1067, 2013.
    DOI: 10.17265/1934-7375/2013.11.009
  19. K. Rankama, T. Sahama, Geoquímica, Madrid, España: Aguilar, 1954. (K. Rankama, T. Sahama, Geochemistry, Madrid, Spain: Aguilar, 1954.)
  20. P. Van Espen, H. Nullens, F. Adams, “A computer analysis of X-Ray Fluorescence spectra,” Nucl. Instrum. Methods, vol. 142, no. 1-2, pp. 243 – 250, Apr. 1977.
    DOI: 10.1016/0029-554X(77)90834-5
  21. P. Kump, QAES Instruction Manual, J.Stefan Institute, Ljubljana, Yugoslavia, 1988.
  22. P. Kump, M. Necemer, P. Kupnic, “Development of the Quantification procedures for in situ XRF analysis,” in In situ applications of X Ray Fluorescence Techniques, IAEA-TECDOC-1456, Vienna, Austria: IAEA, pp.217 – 229.
    Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/te_1456_web.pdf;
    Retrieved on: Jun. 18, 2018
  23. A. Melfi, E. Piccirillo, A. Nardy, “Geological and magmatic aspects of the Paraná basin- An Introsuccion,” in The Mesozoic flood volcanism of the Parana Basin petrogenetic and geophysical aspects, E. M. Piccirillo, A. J. Melfi, Eds., Sao Paulo, Brazil: Instituto Astronómico e Geofísico University of San Paulo, 1988, ch. 1, sec. I.1, pp. 1 – 14.
  24. P. Comin-Chiaramonti, P. Cundari, J. M. De Graaf, C. B. Gomez, E. M. Piccirillo, “Early Cretaceous magmatism in Eastern Paraguay (Western Paraná basin); geological, geophysical and geothermal relationships,” J. Geodyn.,vol.28, no. 4-5, pp. 375 – 395, Nov-Dec. 1999.
    DOI: 10.1016/S0264-3707(99)00016-2
  25. M. Ernesto et al., “Paraná Magmatic Province-Tristan da Cunha Plume System fixed vs mobile plume, petrogemetic considerations and alternative heat source,” J. Volcanol. Geotherm. Res., vol. 118, no. 1-2, pp. 527 – 553, Nov. 2002.
    DOI: 10.1016/S0377-0273(02)00248-2
  26. P. Comin-Chiaramonti, C. B. Gomes, A. Cundari, F. Castorina, P. Censi, “A review of carbonatitic magmatism in the Parana-Angola-Namibia (PAN) System,” Periodico di Mineralogica, vol. 76, no. 2-3, pp. 25 – 78, 2007.
    Retrieved from: http://www.dst.uniroma1.it/riviste/permin/testi/V76.DI/2007PM0016.pdf;
    Retrieved on: Jun. 23, 2018
  27. G. Belliene, P. Comin-Chiaramonti, L. S. Masques, A. J. Melfi, A. J. Nardy, “Petrogenetic aspects of acid and basaltic lavas from the Parana plateau Brazil: Geological, Mineralogical and Petrochemical relationships,” J. Petrol., vol. 27, no. 4, pp. 915 – 944, Aug. 1986.
    DOI: 10.1093/petrology/27.4.915
  28. E. M. Piccirillo, M. Civetta, “Regional variations within the Parana flood basalts (Southerns Brasil) for subconatinetnal mantle heterogeneity,” Chem. Geol., vol. 75, no. 1-2, pp. 103 – 122, Feb. 1989.
    DOI: 10.1016/0009-2541(89)90023-5
  29. G. Bellieni et al., “Continental flood basalts from the central –western regions of the Paraná plateau (Paraguay and Argentina): petrology and petrogenetic aspects,” Neues Jahr. Miner. Abh., vol. 154, pp. 111 – 139, 1986.
  30. E. M. Piccirillo et al., “Bimodal fissural volcanic suites from the Parana basin (Brazil): K-Ar ages, Sr isotopes and geochemistry,” Rev. Geochem. Bras., vol. 1, pp. 53 – 69, 1987.
  31. M. Menzies, N. Rogers, A. Tindle, C. Hawkesworth, “Metasomatic and Enrichment Pocesses in Lithospheric Peridotites, an Effect of Athenosphere-lithosphere Interaction,” in Mantle Metasomatism, M. A. Menzies, C. J. Hawkesworth, Eds., London, UK: Academic Press, 1987, ch. 8, sec. III, pp. 316 – 334.
  32. P. Comin-Chiaramonti, G. Demarchi, V. A. V. Girardi, F. Princivalle, S. Sinigoi, “Evidence of mantle metasomatism and hetereogeneity from peridotite inclusions of northeastern Brazil and Paraguay,” Earth Planet. Sci Lett., vol. 77, no. 2, pp. 203 – 217, Mar. 1986.
    DOI: 10.1016/0012-821X(86)90161-5
  33. S. R. Taylor, S. M. McLennan, “The geochemical evolution of the continental crust,” Rev. Geophys., vol. 33, no. 2, pp. 241 – 265, May 1995.
    DOI: 10.1029/95RG00262
  34. S. M. McLennan, “Relationship between trace element composition of sedimentary rocks and upper continental crust,” Geochem. Geophys. Geosyst.,vol. 2, no. 4, pp. 17, Apr. 2001.
    DOI: 10.1029/2000GC000109
  35. J. F. Facetti-Masulli, P. Kump, E. Gonzalez-Erico, “Selected trace and minor elements in sandstones from Paraguay,” Radiochim. Acta, vol. 98, no. 7, pp. 441 – 446, 2010.
    DOI: 10.1524/ract.2010.1734
  36. M. Dellinger et al, “Li isotope fractionation in the Amazon River basin controlled by the weathering regimes,” Geochim. Cosmochim. Acta, vol. 164, pp. 71 – 93, Sep. 2015.
    DOI: 10.1016/j.gca.2015.04.042
  37. J. Gaillardet, B. Dupre, C. J. Allegre, “Geochemistry of large river suspended sediments: what can we learn about present day weathering of silicates?” Mineralogical Magazine,vol.62, pp. 489 – 490, 1998.
    DOI: 10.1180/minmag.1998.62A.1.259
  38. J. Gaillardet, B. Dupre, P. Louvat, C. J. Allegre, “Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers,” Chem. Geol., vol. 159, no. 1-4, pp. 3 – 30, Jul. 1999.
    DOI: 10.1016/S0009-2541(99)00031-5
  39. S. Yang, H. S. Jung, C. Li, “Two unique weathering regimes in the Changjiang and Huanghe drainage basins: geochemical evidence from river sediments,” Sedimentary Geology,vol.164, no. 1-2, pp. 19 – 34, Feb. 2004.
    DOI: 10.1016/j.sedgeo.2003.08.001
  40. L. Bastian, M. Revel, G. Bayon, A. Dufour, N. Vigie, “Abrupt response of chemical weathering to Late Quaternary hydro-climate changes in Northeast Africa,” Sci. Rep., vol. 7, 44231, 2017.
    DOI: 10.1038/srep44231
  41. N. Höppner, F. Lucassen, C. M. Chiessi, A. O. Sawakuchi, S. Kasemann, “Holocene provenance shift of suspended particulate matter in the Amazon River basin,” Quaternary Sci. Rev.,vol. 190, pp. 66 – 80, Jun. 2018.
    DOI: 10.1016/j.quascirev.2018.04.021
  42. H. Yu et al., “The fertilizing role of African dust in the Amazon rainforest: A first multiyear assessment based on data from Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observations,” Geophys. Res. Lett., vol. 42, no. 6, Mar. 2015.
    DOI: 10.1002/2015GL063040

Microwave, Laser, RF and UV radiations


Zorica Podrascanin, Milica Atlagic, Zoran Mijatovic, Ana Firanj Sremac

Pages: 187–190

DOI: 10.21175/RadProc.2018.40

The UV index (UVI) values were calculated by an empirical model over Novi Sad (19.8 E, 45.3 N, 84 m), Vojvodina region, Serbia, on clear sky days in all seasons. The ground-based ozone measurements for this location, the solar zenith angles and the distance from the Sun were used as input data for the model. At the same site, the UVI values were measured by a Yankee Environmental Systems (YES) UVB-1 pyranometer. The measured values were compared to the calculated values. This comparison was performed to improve this model for UVI forecast in the Vojvodina region. The differences between the modeled and measured data are small enough with root-mean-square differences of less than 0.8 in summer and 0.3 in winter, so we can conclude that this model could be used for UVI forecast for clear sky conditions in this region.
  1. F. McKinlay, B. L. Diffey, “A reference action spectrum for ultraviolet induced erythema in human skin, CIE Research note” CIE J., vol. 6, no. 1, pp. 17 – 22, 1987.
  2. P. Koepke et al., “Comparison of Models Used for UV Index Calculations,” Photochem. Photobiol. vol. 67, no. 6, pp. 657 – 662, Jun. 1998.
    DOI: 10.1111/j.1751-1097.1998.tb09109.x
    PMid: 9687266
  3. M. Allaart et. al., “An empirical model to predict the UV-index based on solar zenith angles and total ozone,” Meteorol. Appl. vol. 11, no. 1, pp. 59 – 65, Mar. 2004.
    DOI: 10.1017/S1350482703001130
  4. Report of the WMO Meeting of Experts on UV-B Measurements, Data Quality and Standardization of UV Indices, WMO TD No. 625, WMO, Les Diableretes, Switzerland, 1994.
    Retrieved from: http://ds.data.jma.go.jp/qasac/report/gaw095.pdf;
    Retrieved on: Aug. 21, 2018
  5. N. Chubarova et al., “A new parameterization of the UV irradiance altitude dependence for clear-sky conditions and its application in the on-line UV tool over Northern Eurasia,” Atmos. Chem. Phys. vol. 16, no. 18, pp. 11867 – 11881, Sep. 2016.
    DOI: 10.5194/acp-16-11867-2016
  6. Y. Sola et al., “Altitude effect in UV radiation during the Evaluation of the Effects of Elevation and Aerosols on the Ultraviolet Radiation 2002 (VELETA-2002) field campaign,” J. Geophys. Res-Atmos, vol. 113, no. D23, D23202, Dec. 2008.
    DOI: 10.1029/2007JD009742


M. Ivanova, Ts. Shalamanova, V. Zaryabova, P. Ivanova, Iv. Topalova, M. Israel

Pages: 191–196

DOI: 10.21175/RadProc.2018.41

The exposure to radiofrequency electromagnetic fields (RF EMF) in the living environment is due to variety of sources, predominantly for telecommunications – radio and TV stations and base stations for mobile communication emitting in the frequency range from 100 kHz to several GHz. In recent years research has shown that such systems have significantly increased RF EMF levels in urban areas compared to those measured in the 1980s, when the major sources in the environment were analogue radio and television stations. The aim of the report is to present the assessment of electromagnetic field exposure to the general public from telecommunication sources on the territory of the country. Separate data from measurement and exposure assessment of RF EMF levels around base stations for mobile communication and Radio and TV stations are considered. The data contain results of spot measurements of RF EMF levels emitted by separate base stations for mobile communication and radio and TV stations and spot measurements in areas with a high density of RF EMF sources – 105 regions in the country. It covers 1376 base stations and 280 radio and TV stations. The received results show that RF EMF levels are below the permissible levels according to the national legislation. Higher values, within the exposure limits, are found in areas with large number of sources or when the emitters are mounted on small height, but in such cases the values are less than 30% of those in national legislation. Compared to the European legislation the registered RF EMF levels are below 1 % of exposure limits. The measured values of the electric field strengths and power densities around the radio and television stations are within the exposure limits according to the national legislation. Values above exposure limits have been found in 1-2% of cases, but they were measured outside the urban areas where only incidental stay of the general public is possible. In comparison to the European legislation (Council Recommendation 1999/519/ЕС) measured values of the electric field strength and power density around radio and TV stations are well below the limit values.
  1. The Council of the European Union. (Jul. 12, 1999). 1999/519/EC Council Recommendation of 12 July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz)
    Retrieved form: https://publications.europa.eu/en/publication-detail/-/publication/9509b04f-1df0-4221-bfa2-c7af77975556/language-en;
    Retrieved on: May 15, 2018
  2. Basic standard for the in-situ measurement of electromagnetic field strength related to human exposure in the vicinity of base stations, EN ISO 50492:2008, Jan. 1, 2008.
    Retrieved from: https://infostore.saiglobal.com/en-gb/Standards/BS-EN-50492-2008-235283_SAIG_BSI_BSI_550344/;
    Retrieved on: May 15, 2018
  3. Basic standard on measurement and calculation procedures for human exposure to electric, magnetic and electromagnetic fields (0 Hz – 300 GHz), EN ISO 50413:2008, Jan. 1, 2008.
    Retrieved from: https://infostore.saiglobal.com/en-gb/standards/i-s-en-50413-2008-873723_SAIG_NSAI_NSAI_2077363/;
    Retrieved on: May 15, 2018
  4. Basic standard to demonstrate the compliance of fixed equipment for radio transmission (110 MHz – 40 GHz) intended for use in wireless telecommunication networks with the basic restrictions or the reference levels related to general public exposure to radio frequency electromagnetic fields, when put into service, EN ISO 50400:2006, Jun. 26, 2006.
    Retrieved from: https://infostore.saiglobal.com/preview/is/en/2006/i.s.en50400-2006%2Ba1-2012.pdf?sku=680553;
    Retrieved on: May 15, 2018
  5. The European Parliament. (Apr. 2, 2009). 2008/2211(INI) Resolution of 2 April 2009 on health concerns associated with electromagnetic fields.
    Retrieved from: http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+TA+P6-TA-2009-0216+0+DOC+XML+V0//EN;
    Retrieved on: May 15, 2018
  6. M. Ivanova, Ts. Shalamanova, “Measurements of RF radiation around base stations for mobile communication in Bulgaria,” J. Environ. Prot. Ecol, vol. 6, no. 2, pp. 328 – 336, Jan. 2005.
    Retrieved from: http://www.jepe-journal.info/vol-6-no-2;
    Retrieved on: May 15, 2018
  7. W. Joseph, L. Verloock, F. Goeminne, G. Vermeeren, L. Martens, “Assessment of general public exposure to LTE and RF sources present in an urban environment,” Bioelectromagnetics, vol. 31, no. 7, pp. 576 – 579, Oct. 2010.
    DOI: 10.1002/bem.20594
    PMiD: https://ephconference.eu/repository/countries/Abstract_Book_Vol_8-1Suppl.pdf;
    Retrieved on: May 12, 2018
  8. Министерство на здравеопазването. (14.03.1991). Наредба № 9 от 14.03.1991 г. за пределно допустими нива на електромагнитни полета в населени територии и определяне на хигиенно-защитни зони около излъчващи обекти. (Ministry of Health. (Mar. 14, 1991). Ordinance No. 9 from 14.03.1991 on the limit values of electromagnetic fields in populated areas and the determination of hygienic-protective zones around radiating objects.)
    Retrieved from: http://econ.bg/Нормативни-актове/Наредба-9-от-14-03-1991-г-за-пределно-допустими-нива-на-електромагнитни-полета-в-населени-_l.l_i.128561_at.5.html;
    Retrieved on: May 15, 2018
  9. J. T. Rowley, K. H. Joyner, “Comparative international analysis of radiofrequency exposure surveys of mobile communication radio base stations,” J. Expo. Sci. Environ. Epidemiol., vol. 22, no. 3, pp. 304 – 315, May-Jun. 2012.
    DOI: 10.1038/jes.2012.13
    PMiD: 22377680
    PMCiD: 3347802
  10. M. Schubert, C. Bornkessel, M. Wuschek, P. Schimdt, “Exposure of the general public to digital broadcast transmitters compared to analogue ones,” Radiat. Prot. Dosim., vol. 124, no. 1, pp. 53 – 57, Jul. 2007.
    DOI: 10.1093/rpd/ncm337
    PMid: 17617635
  11. Opinion on potential health effects of exposure to electromagnetic fields (EMF), SCENIHR Opinion, WHO, Switzerland, 2016.
    DOI: 10.2772/75635


Michel Israel, Mihaela Ivanova, Victoria Zaryabova, Tsvetelina Shalamanova, Petya Ivanova

Pages: 197–201

DOI: 10.21175/RadProc.2018.42

The health policy connected with electromagnetic fields’ exposure of workers in Europe was developed on the basis of the ICNIRP Guidelines through the implementation of the Directive 2013/35/EC. The transposition of the EU Directive into the national legislation is a large process including the implementation of an ordinance, training of employers and workers, occupational health services, specialists performing measurements. An additional activity is the development of standard methods of risk assessment for practical implementation valid for concrete occupations and workplaces. Special attention should be paid to the workplaces with magnetic resonance imaging.
  1. “Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz),” Health Phys., vol. 74, no 4, pp. 494 – 522, Apr. 1998.
    PMid: 9525427
  2. “Guidelines on limits of exposure to static magnetic fields,” Health Phys., vol. 96, no 4, pp. 504 – 514, Apr. 2009.
    DOI: 10.1097/01.HP.0000343164.27920.4a
    PMid: 19276710
  3. “Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz – 100 kHz),” Health Phys., vol. 99, no 6, pp. 818 – 836, Dec. 2010.
    DOI: 10.1097/HP.0b013e3181f06c86
    PMid: 21068601
  4. Министерство на труда и социалната политика. (15.11.2016). Наредба № рд-07-5 от 15 ноември 2016 г. за минималните изисквания за осигуряване на здравето и безопасността на работещите при рискове, свързани с експозиция на електромагнитни полета. (Ministry of the Labor and Social Policy. (Nov. 15, 2016). Наредба Ordinance RD-07-5 on the minimal requirements for providing health and safety at work at risks by exposure to electromagnetic fields)
    Retrieved from: http://dv.parliament.bg/DVWeb/broeveList.faces#;
    Retrieved on: May 14, 2018
  5. Non-binding guide to good practice for implementing Directive 2013/35/EU: Electromagnetic fields, vol. 1, European Commission, Luxembourg, 2015.
    Retrieved from: http://bookshop.europa.eu/en/non-binding-guide-to-good-practice-for-implementing-directive-2013-35-eu-electromagnetic-fields-pbKE0415140/;
    Retrieved on: May 14, 2018
  6. Non-binding guide to good practice for implementing Directive 2013/35/EU: Electromagnetic fields, vol. 2, European Commission, Luxembourg, 2015.
    Retrieved from: https://publications.europa.eu/en/publication-detail/-/publication/e71e8b3f-8775-11e5-b8b7-01aa75ed71a1;
  7. Non-binding guide to good practice for implementing Directive 2013/35/EU, Electromagnetic fields, Guide for SMEs, European Commission, Luxembourg, 2015.
    Retrieved from: https://publications.europa.eu/en/publication-detail/-/publication/c5fb1d53-8775-11e5-b8b7-01aa75ed71a1;
    Retrieved on: May 14, 2018

Medical Imaging


David Zoul, Pavel Zháňal

Pages: 202–206

DOI: 10.21175/RadProc.2018.43

A unique 3D tomography apparatus was built and successfully tested in Research Centre Rez. The apparatus allows a three-dimensional view into the interior of low-dimension radioactive samples with a diameter up to several tens of millimeters giving a better resolution than one cubic millimeter and it is designed to detect domains with different levels of radioactivity. Structural inhomogeneities such as cavities, cracks or regions with different chemical composition can be detected by using this equipment. The SPECT scanner has been successfully tested on several samples composed of a 3mm radionuclide source located eccentrically within homogeneous steel bushings. To detect fine cracks inside small samples an ultrafine scan of the sample was carried out in the course of 24 hours with a 0.5 mm longitudinal and transverse step and 18° angular step. The exact location and orientation of a fine crack artificially formed inside a sample has been detected.
  1. Research Centre Rez official webpage, Řež, Czech Republic, 2017.
    Retrieved from: http://cvrez.cz/en/;
    Retrieved on: Nov. 20, 2017
  2. G. F. Knoll, “Single-photon emission computed tomography”, in Proceedings of the IEEE, 1983, vol. 71, no. 3, pp. 320 – 329, Mar. 1983. Retrieved from: https://ieeexplore.ieee.org/document/1456858;
    Retrieved on: Dec. 8, 2017
  3. Alvat official webpage, Prague, Czech Republic, 2017.
    Retrieved from: http://www.alvat.cz/;
    Retrieved on: Dec. 8, 2017
  4. S. Holcombe, S. Jacobsson Svärd, L. Hallstadius, “A novel gamma emission tomography instrument for enhanced fuel characterization capabilities within the OECD halden reactor project,” Ann. Nucl. Energy, 2015, vol. 85, pp. 837 – 845, Nov. 2015.
    DOI: 10.1016/j.anucene.2015.06.043
  5. S. R. Deans, The Radon Transform and Some of Its Applications, Dover, UK: Dover Publications, 2007.
  6. R. N. Bracewell, “Strip integration in radio astronomy,” Austr. J. Phys., vol. 9, pp. 198 – 217, 1956.
    DOI: 10.1071/PH560198
  7. G. L. Zeng, “Revisit of the ramp filter,” IEEE Trans. Nucl. Sci., vol. 62, no. 1, pp. 131 – 136, Feb. 2015.
    DOI: 10.1109/TNS.2014.2363776
    PMid: 25729091
    PMCid: PMC4341983
  8. S. R. Cherry, J. A. Sorenson, M. E. Phelps, Physics in Nuclear Medicine, 4th ed., Philadelphia (PA), US: Elsevier Health Sciences, 2012.
    Retrieved from: https://abmpk.files.wordpress.com/2015/02/physics-in-nuclear-medicine-by-james-phelp.pdf;
    Retrieved on: Dec. 13, 2017
  9. G. van Rossum, J. de Boer, “Linking a stub generator (AIL) to a prototyping language (Python),” in Proc. EurOpen Spring Conference on Open Distributed Systems, Tromsø, Norway, 1991, pp. 229 – 247.
  10. J. Radon, “Über die bestimmung von funktionen durch ihre integralwerte längs gewisser mannigfaltigkeiten,” Akad. Wiss., vol. 69, pp. 262 – 277, 1917. (J. Radon, “On the Determination of Functions From Their Integral Values Along Certain Manifolds,” Akad. Wiss., vol. 69, pp. 262 – 277, 1917.)
    Retrieved from: http://people.csail.mit.edu/bkph/courses/papers/Exact_Conebeam/Radon_Deutsch_1917.pdf;
    Retrieved on: Dec. 20, 2017
  11. S. Kaczmarz, “Approximate Solution for Systems of Linear equations (English translation),” Bull. Int. Acad. Pol. Sci. Lett., pp. 355 – 357, 1937.
    Retrieved from: http://jasonstockmann.com/Jason_Stockmann/Welcome_files/kaczmarz_english_translation_1937.pdf;
    Retrieved on: Dec. 20, 2017
  12. Interactive 3D models, Charles University, Prague, Czech Republic, 2017.
    Retrieved from: http://material.karlov.mff.cuni.cz/people/zhanal/3D/3D.html;
    Retrieved on: Jan. 15, 2017
  13. A General Monte Carlo N-Particle (MCNP) Transport Code, Los Alamos National Laboratory, Los Alamos (NM), USA, 2018.
    Retrieved from: https://mcnp.lanl.gov/;
    Retrieved on: Jan. 23, 2018

Pharmaceutical Sciences


Maja Cvetković, Dušan Ilić, Dušica Stojanović

Pages: 207–212

DOI: 10.21175/RadProc.2018.44

The use of herbal supplements and medicines is increasing rapidly as most people consider them to be of natural origin and therefore safe. Many herbal medications are used to treat diseases but while they are often efficacious, their safety has not sufficiently been considered by physicians or users. One particular safety concern is the risk of interactions with drugs, which often leads to toxicity or loss of therapeutic efficacy. A significant number of patients combine herbal remedies with prescription medications and there is growing evidence for interactions of drugs with herbal remedies or single compound originating from plants. The aim of this paper is to evaluate the possible interactions between chronic patient therapy and herbal substances. The research is presented as a descriptive study which included patients of 30 to 80 years of age, who were randomly selected in Niš from September to December 2017 and agreed to be interviewed as well as completed the questionnaires. We surveyed 157 patients, 115 respondents (73.24%) reported use of dietary supplements. In total, 105 (66.87%) interactions with potential clinical significance were identified. The 5 most common natural products with a potential for interaction (garlic, valerian, ginkgo, and St John’s wort) accounted for 68% of the potential clinically significant interactions. The 4 most common classes of prescription medications with a potential for interaction (antithrombotic medications, sedatives, antidepressant agents, and antidiabetic agents) accounted for 94% of the potential clinically significant interactions. No patient was harmed seriously from any interaction. It is an imperative that pharmacists and doctors ask patients what they are using within their chronic illness treatment and estimate the possible use of a dietary supplement based on the data obtained.
  1. G. K. Dresser, D. G. Bailey, “A basic conceptual and practical overview of interactions with highly prescribed drugs,” Can. J. Clin. Pharmacol., vol. 9, no. 4, pp. 191 – 198, Feb. 2002.
    PMid: 12584577
  2. J. H. Lin, A. Y. Lu, “Inhibition and induction of cytochrome P450 and the clinical implications,” Clin. Pharmacokinet., vol. 35, no. 5, pp. 361 – 390, Nov. 1998.
    DOI: 10.2165/00003088-199835050-00003
    PMid: 9839089
  3. R. M. Goldberg, J. Mabee, L. Chan, S. Wong, “Drug-drug and drug-disease interactions in the ED: analysis of a high-risk population,” Am. J. Emerg., vol. 14, no. 5, pp. 447 – 450, Sep. 1996.
    DOI: 10.1016/S0735-6757(96)90147-3
    PMid: 8765105
  4. M. Shou, “Prediction of pharmacokinetics and drug–drug interactions from in vitro metabolism data,” Curr. Opin. Drug Discov. Dev. Vol. 8, no.1, pp. 66 – 77, Jan. 2005.
    PMid: 15679174
  5. P. B. Watkins, “Drug metabolism by cytochromes P450 in liver and small bowel,” Gastrointest. Pharmacol. vol. 21, no. 3, pp. 511 – 525, Sep.1992
    PMid: 1516957
  6. M. F. Paine et al., “The human intestinal cytochrome P450 pie,” Drug Metabol. Dispos. vol. 34, no. 5, pp. 880 – 886, May 2006.
    DOI: 10.1124/dmd.105.008672
    PMid: 16467132
  7. D. Shaw, G. Ladds, P. Duez, E. Williamson, K. Chan, “Pharmacovigilance of herbal medicine,” J. Ethnopharmacol., vol. 140, no. 3, pp. 513 – 518, Apr. 2012.
    DOI: 10.1016/j.jep.2012.01.051
    PMid: 22342381
  8. H Schilcher, S Kammerer, T Wegener, “Pflanzenprofile,” in Leitfaden Phytoterapie, München, Deutschland: Elsevier GmbH, Urban & Fisher Verlag, 2007, kap. 2. (H Schilcher, S Kammerer, T Wegener, “Plant profiles,” in Phytotherapy Guide, Munich, Germany: Elsevier GmbH, Urban & Fisher Verlag, 2007, ch. 2.)
  9. Z. Bojanic, N. Bojanic, V. Bojanic, “Drug interactions with grapefruit,” Med Pregl. vol. 63, no. 11 – 12, pp. 805 – 810. Nov–Dec. 2010.
    PMid: 21553459
  10. A. De Boer, F. van Hunsel, A. Bast, “Adverse food-drug interactions,” Regul. Toxicol. Pharmacol., vol. 73, no. 3, pp. 859 – 865, Dec. 2015.
    DOI: 10.1016/j.yrtph.2015.10.009
    PMid: 26482404
  11. D. Genser, “Food and drug interaction: consequences for the nutrition/health status,” Ann. Nutr. Metab., vol. 52, suppl. 1, pp. 29 – 32, Mar. 2008.
    DOI: 10.1159/000115345
    PMid: 18382075
  12. B. N. Singh, B. K. Malhotra, “Effects of food on the clinical pharmacokinetics of anticancer agents,” Clin. Pharmacokinet., vol. 43, no. 15, pp. 1127 – 1156, 2004.
    DOI: 10.2165/00003088-200443150-00005
    PMid: 15568891
  13. Ethical principles for medical research involving Human Subjects, World Medical Association, Helsinki, Finland, 1964.
    Retrieved from: https://www.who.int/bulletin/archives/79(4)373.pdf;
    Retrieved on: Jan. 13, 2018
  14. M. Unger, “Pharmacokinetic drug interactions involving Ginkgo biloba,” Drug Metabol. vol. 45, no. 3, pp. 353 – 385, Aug. 2013.
    DOI: 10.3109/03602532.2013.815200
    PMid: 23865865
  15. L. T. Vieira, S. M. Huang, “Botanical-drug interactions: a scientific perspective,” Planta Med. vol. 78, no. 13, pp. 1400 – 1415, Sep. 2012.
    DOI: 10.1055/s-0032-1315145
    PMid: 22864989
  16. M. Cvetkovic, D. Ilic, M. Nikolic, N. Stosic, M. Randjelovic, “Monitoring of the nutritional intake of folic acid among pregnant women in Niš,” Facta Universitatis., vol. 13, no. 3, pp. 239 – 245, 2016.
    DOI: 10.22190/FUWLEP1603239C
  17. D. Stojanovic, D. Markovic, “Nutrigenomika – nauka za 21.vek,” Vojnosanitetski pregled., vol. 68., br. 9, str. 786 – 791, 2011. (D. Stojanovic, D. Markovic, “Nutrigenomics – science for the 21st century,” Military Medical Review, vol. 68, no. 9, pp. 786 – 791, 2011.)
    DOI: 10.2298/VSP1109786S
  18. Interactions by Herb or Supplement, University of Maryland Medical Center, Greenspring (MD), USA, 2007.
    Retrieved from: http://www.umm.edu/altmed/ConsLookups/InteractionsByHerbSupp.html;
    Retrieved on: Jan. 12, 2007
  19. A. Fugh-Berman, “Herb-drug interactions,” Lancet. vol. 355, no. 9198, pp. 134 – 138, Feb. 2000.
    DOI: 10.1016/S0140-6736(99)06457-0
  20. V. Butterweck et al., “Pharmacokinetic herb-drug interactions: are preventive screenings necessary and appropriate,” Planta Med. vol. 70, no. 9, pp. 784 – 791, Sep. 2004.
    DOI: 10.1055/s-2004-827223
    PMid: 15386186
  21. L. Rodriguez-Fragoso et al., “Potential risks resulting from fruit/vegetable-drug interactions: effects on drug-metabolizing enzymes and drug transporters,” J. Food Sci., vol. 76, no. 4, pp. 112 – 124, May 2011.
    DOI: 10.1111/j.1750-3841.2011.02155.x
    PMid: 22417366
  22. E. Nutescu, I. Chuatrisorn, E. Hellenbart, Drug and dietary interactions of warfarin and novel oral anticoagulants: an update, J. Thromb. Thrombolysis.vol. 31, no.3, pp. 326–343. Apr 2011.
    DOI: 10.1007/s11239-011-0561-1
    PMid: 21359645
  23. R. Nowack, “Cytochrome P450 enzyme, and transport protein mediated herb-drug interactions in renal transplant patients: grapefruit juice, St John’s Wort -and beyond!” Nephrology,vol. 13, no. 4, pp. 337 – 347, Jun. 2008.
    DOI: 10.1111/j.1440-1797.2008.00940.x
    PMid: 18363644
  24. J. Boullata, “Natural health product interactions with medication,” Nutr. Clin. Pract., vol. 20, no. 1, pp. 33 – 51, Feb. 2005.
    DOI: 10.1177/011542650502000133
    PMid: 16207645
  25. P. M. Leite, M. A. P. Martins, R. O. Castilho, “Review on mechanisms and interactions in concomitant use of herbs and warfarin therapy,” Biomed. Pharmacother., vol. 83, pp. 14 – 21, Oct. 2016.
    DOI: 10.1016/j.biopha.2016.06.012
  26. E. M. Williamson, S. Driver, K. Baxter, “Stockley’s Herbal Medicines Interactions: A Guide to the Interactions of Herbal Medicines. Second ed.,” Pharmaceutical Press, vol. 102, no. 3, pp. 221 – 222, Jul. 2014.
    DOI: 10.3163/1536-5050.102.3.018
    PMCid: PMC4076137
  27. D. M. Qato et al., “Use of prescription and over the counter medications and dietary supplements among older adults in the United States,” JAMA., vol. 300, no. 24, pp. 2867 – 2878, Dec. 2008.
    DOI: 10.1001/jama.2008.89
    PMid: 19109115
  28. Drugs, Herbs and Supplements,NIH MedlinePlus, Bethesda (MD), USA, 2007.
    Retrieved from: https://medlineplus.gov/druginformation.html;
    Retrieved on: Jun. 14, 2018
  29. J. P. Gonzalez et al., “Influence of vitamin C on the absorption and first pass metabolism of propranolol,” Eur. J. Clin. Pharmacol., vol. 48, no. 3-4. pp. 295 – 297, Jul. 1995.
    DOI: 10.1007/BF00198315
    PMid: 7589058



Jelena S. Stanojević, Dragan J. Cvetković, Jelena B. Zvezdanović, Ljiljana P. Stanojević, Dejan Z. Marković†

Pages: 213–219

DOI: 10.21175/RadProc.2018.45

The aim of the present study was to consider bilirubin (BRB) and riboflavin (RFL) mutual interaction in methanol solution under continuous UV-A and UV-B irradiation regime. Continuous irradiations of samples were performed in a cylindrical photochemical reactor “Rayonet”, with 10 symmetrically placed lamps having the emission maximum at 300 nm (UV-B) and 350 nm (UV-A). The rate of BRB and RFL photodegradation along with simultaneous products formation, as a function of UV exposure time, was followed by combining UV-VIS absorption measurements with RP-HPLC analysis. The compounds were separated by gradient elution with mobile phase A (formic acid, 0.1% water solution) and B (formic acid, 0.1% methanol solution). According to the results obtained, BRB degradation in the absence of RFL was almost 22 times and 9 times slower in comparison to its degradation observed in BRB-RFL mixture under continuous UV-A and UV-B irradiation, respectively. Moreover, BRB degradation in BRB-RFL mixture under anaerobic conditions was almost 24 times and 16 times slower in comparison to the degradation in aerobic conditions under UV-A and UV-B light, respectively. The latter observation suggests that presence of ROS species contributes to UV-induced BRB degradation. These experiments provide the indirect proof of BRB acting as Type II sensitizer because of the fact that 1O2 produced by RFL mediates BRB irreversible degradation giving rise to dipyrrole methanol adducts as typical products obtained via Type II mechanism.
  1. N. Schade, C. Esser, J. Krutmann, “Ultraviolet B radiation-induced immunosuppression: molecular mechanisms and cellular alterations,” Photochem. Photobiol. Sci., vol. 4, no. 9, pp. 699 – 708, Sep. 2005.
    DOI: 10.1039/b418378a
    PMid: 16121280
  2. S. González, M. Fernández-Lorente, Y. Gilaberte-Calzada, “The latest on skin photoprotection,” Clin. Dermatol., vol. 26, no. 6, pp. 614 – 626, Nov-Dec. 2008.
    DOI: 10.1016/j.clindermatol.2007.09.010
    PMid: 18940542
  3. F. Afaq, “Natural agents: cellular and molecular mechanisms of photoprotection,” Arch. Biochem. Biophys., vol. 508, no. 2, pp. 144 – 151, Apr. 2011.
    DOI: 10.1016/j.abb.2010.12.007
    PMid: 21147060
  4. A. R. Young, “Acute effects of UVR on human eyes and skin,” Prog. Biophys. Mol. Biol., vol. 92, no. 1, pp. 80 –85, Sep. 2006.
    DOI: 10.1016/j.pbiomolbio.2006.02.005
    PMid: 16600340
  5. A. Svobodová, J. Psotová, D. Walterová, “Natural phenolics in the prevention of UV-induced skin damage. A review,” Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., vol. 147, no. 2, pp. 137 – 145, Dec. 2003.
    PMid: 15037894
  6. S. L. Deore, S. Kombade, B. A. Baviskar, S. S. Khadabadi, “Photoprotective antioxidant phytochemicals,” Int. J. Phyto. Pharm., vol. 2 no. 3, pp. 72 – 76, May-Jun. 2012.
    DOI: 10.7439/ijpp.v2i3.501
  7. J. Krutmann, “Ultraviolet A radiation-induced biological effects in human skin: relevance for photoaging and photodermatosis,” J. Dermatol. Sci., vol. 23, suppl. 1, pp. S22 – S26, Mar. 2000.
    PMid: 10764987
  8. F. Menaa, A. Menaa, J. Tréton, “Polyphenols against skin aging,” in Polyphenols in human health and disease, New York (NY), USA: Academic Press, 2013, ch. 63., sec. 6.2, pp. 819 – 830.
    DOI: 10.1016/B978-0-12-398456-2.00063-3
  9. A. Mahns, I. Melchheier, C. V. Suschek, H. Sies, L. O. Klotz, “Irradiation of cells with Ultraviolet-A (320-400 nm) in the presence of cell culture medium elicits biological effects due to extracellular generation of hydrogen peroxide,” Free Radic. Res., vol. 37, no. 4, pp. 391 – 397, Apr. 2003.
    PMid: 12747733
  10. T. Herrling, K. Jung, J. Fuchs, “Measurements of UV-generated free radicals/reactive oxygen species (ROS) in skin,” Spectrochim. Acta A. Mol. Biomol. Spectrosc., vol. 63, no. 4, pp. 840 – 845, Mar. 2006.
    DOI: 10.1016/j.saa.2005.10.013
    PMid: 16543118
  11. C. A. Brohem et al., “Artificial skin in perspective: concepts and applications,” Pigment Cell Melanoma Res., vol. 24, no. 1, pp. 35 – 50, Feb. 2011.
    DOI: 10.1111/j.1755-148X.2010.00786.x
    PMid: 21029393
  12. G. T. Wondrak, M. K. Jacobson, E. L. Jacobson, “Endogenous UVA photosensitizers: mediators of skin photodamage and novel targets for skin photoprotection,” Photochem. Photobiol. Sci., vol. 5, no. 2, pp: 215 – 237, Feb. 2006.
    DOI: 10.1039/b504573h
    PMid: 16465308
  13. D. Z. Marković, “Kinetika i mehanizam fotosenzibilizovane peroksidacije lipidnih konstituenata biomembrana,” Doktorska disertacija, Univerzitet u Beogradu, Prirodnomatematički fakulteti, Fakultet za fizičku hemiju, Srbija, 1990. (D. Z. Marković, “Kinetics and mechanism of photosensitized peroxidation of lipid constituents of biomembranes,” Ph.D. dissertation, University of Belgrade, Faculties of Sciences and Mathematics, Faculty for Physical Chemistry, Serbia, 1990.)
  14. C. S. Foote, “Photooxidation,” in Phototherapy in the newborn: An overview, Washington (DC), USA: National academy of sciences, 1974, pp. 21 – 33.
    DOI: 10.17226/20078
  15. H. P. Lassalle, “Etude des mécanismes du photoblanchiment de la 5,10,15,20-tetrakis(m-hydroxyphenyl)bactériochlorine, en solution, in vitro et in vivo,” Thèse de doctorat, Université Henri Poincaré-Nancy I, Faculté de Médecine, Nancy, France, 2005. (H. P. Lassalle, “Study of the photobleaching mechanisms of the 5,10,15,20-tetrakis (m-hydroxyphenyl) bacteriochlorin (m-THPBC), in solution, in vitro and in vivo,” Ph.D. dissertation, Henri Poincare University-Nancy I, Faculty of Medicine, Nancy, France, 2005.)
    Retrieved from: https://tel.archives-ouvertes.fr/tel-00378394/document;
    Retrieved on: Jun. 24, 2018
  16. C. S. Foote, “Mechanisms of Photosensitized Oxidation,” Science, vol. 162, no. 3857, pp. 963 – 970, Nov. 1968.
    DOI: 10.1126/science.162.3857.963
  17. S. K. Dey, D. A. Lightner, “Lipid- and water-soluble bilirubins,” Monatsh. Chem., vol. 141, no. 1, pp. 101 – 109, Jan. 2010.
    DOI: 10.1007/s00706-009-0232-5
  18. A. F. McDonagh, “Controversies in bilirubin biochemistry and their clinical relevance,” Semin. Fetal. Neonatal Med., vol. 15, no. 3, pp. 141 – 147, Jun. 2010.
    DOI: 10.1016/j.siny.2009.10.005
    PMid: 19932645
  19. J. Fevery, “Bilirubin in clinical practice: a review,” Liver Int., vol. 28, no. 5, pp. 592 – 605, May. 2008.
    DOI: 10.1111/j.1478-3231.2008.01716.x
    PMid: 18433389
  20. G. F. Combs, Jr., “Riboflavin,” in The vitamins Fundamental aspects in nutrition and health, 3rd ed., Amsterdam, Netherlands: Academic Press, 2012, ch. 3, pp. 53 – 54.
    Retrieved from:;
    Retrieved on: Jun. 24, 2018
  21. H. J. Powers, “Riboflavin (vitamin B-2) and health,” Am. J. Clin. Nutr., vol. 77, no. 6, pp. 1352 – 1360, Jun. 2003.
    DOI: 10.1093/ajcn/77.6.1352
    PMid: 12791609
  22. J. S. Stanojevic, J. B. Zvezdanovic, D. Z. Markovic, “Bilirubin degradation in methanol induced by continuous UV-B irradiation: a UHPLC – ESI-MS study,” Pharmazie, vol. 70, no. 4, pp. 225 – 230, Apr. 2015.
    DOI: 10.1691/ph.2015.4122
    PMid: 26012251
  23. J. S. Stanojevic, J. B. Zvezdanovic, D. Z. Markovic, “Riboflavin degradation in the presence of quercetin in methanol under continuous UV-B irradiation: the ESI–MS–UHPLC analysis,” Monatsh. Chem., vol. 146, no. 11, pp. 1787 – 1794, Nov. 2015.
    DOI: 0.1007/s00706-015-1561-1
  24. J. N. Chacόn, J. McLearie, R. S. Sinclair, “Singlet oxygen yields and radical contributions in the dye-sensitized photo-oxidation in methanol of esters of polyunsatured fatty acids (oleic, linoleic, linolenic and arachidonic),” Photochem Photobiol., vol. 47, no. 5, pp: 647 – 656, May 1988.
  25. J. Koziol, “Studies on flavins in organic solvents-II.* Photodecomposition of riboflavin in the presence of oxygen,” Photochem Photobiol., vol. 5, no. 1, pp. 55 – 62, Jan. 1966.
    DOI: 10.1111/j.1751-1097.1966.tb05760.x
  26. M. A. Sheraz, S. H. Kazi, S. Ahmed, Z. Anwar, I. Ahmad, “Photo, thermal and chemical degradation of riboflavin,” Beilstein J. Org. Chem., vol. 10, pp. 1999 – 2012, Aug. 2014.
    DOI: 10.3762/bjoc.10.208
  27. M. Insińska-Rak, A. Golczak, M. Sikorski, “Photochemistry of riboflavin derivatives in methanolic solutions,” J. Phys. Chem. A., vol. 116, no. 4, pp. 1199 – 1207, Jan. 2012.
    DOI: 10.1021/jp2094593
    PMid: 22217187
  28. I. Ahmad et al., “Solvent effect on the photolysis of riboflavin,” AAPS PharmSciTech., vol. 16, no. 5, pp. 1122 – 1128, Oct. 2015.
    DOI: 10.1208/s12249-015-0304-2
    PMid: 25698084
  29. D. R. Cardoso, S. H. Libardia, L. H. Skibsted, “Riboflavin as a photosensitizer. Effects on human health and food quality,” Food Funct., vol. 3, no. 5, pp. 487 – 502, May 2012.
    DOI: 10.1039/c2fo10246c
    PMid: 22406738
  30. P. F. Heelis, “The photophysical and photochemical properties of flavins (isoalloxazines),” Chem. Soc. Rev., vol. 11, no. 1, pp. 15 – 39, 1982.
    DOI: 10.1039/cs9821100015
  31. C. Y. Lu et al., “Generation and photosensitization properties of the oxidized radical of riboflavin: a laser flash photolysis study,” J. Photochem. Photobiol. B: Biol., vol. 52, no. 1-3, pp. 111 – 116, Oct. 1999.
    DOI: 10.1016/S1011-1344(99)00111-6
  32. M. Boopathi, M. Subbaiyan, “Oxidation and estimation of bilirubin by using carbon microelectrode,” Indian J. Chem. Sec. A., vol. 38A, no. 12, pp. 1239 – 1244, Dec. 1999.
    Retrieved from: http://hdl.handle.net/123456789/16134;
    Retrieved on: Dec. 3, 2018
  33. E. Knobloch, R. Hodr, J. Herzman, V. Houdkova, “Function of flavins in photolysis of bilirubin in vitro,” Collection Czechoslovak Chern. Commun., vol. 47, no. 5, pp. 1514 – 1522, 1982.
    DOI: 10.1135/cccc19821514
  34. R. Bonnett, J. C. M. Stewart, “Photo-oxidation of bilirubin in hydroxylic solvents: propentdyopent adducts as major products,” J. Chem. Soc., Chem. Commun., no. 10, pp. 596 – 597, 1972.
    DOI: 10.1039/C39720000596
  35. G. Agati, F. Fusi, “New trends in photobiology (invited review). Recent advances in bilirubin photophysics,” J. Photochem. Photobiol. B., vol. 7, no. 1. pp. 1 – 14, Sep. 1990.
    PMid: 2125072
  36. C. S. Foote, T. Y. Ching, “Chemistry of singlet oxygen. XXI. Kinetics of bilirubin photooxygenation,” J. Am. Chem. Soc., vol. 97, no. 21, pp. 6209 – 6214, Oct. 1975.
    PMid: 1176727
  37. C. H. Gray, A. Kulczycka, D. C. Nicholson, “The photodecomposition of bilirubin and other bile pigments,” J. Chem. Soc. Perkin 1, vol. 3, pp. 288 – 294, 1972.
    PMid: 5065591
  38. D. A. Lightner, “In vitro photooxidation products of bilirubin,” in Phototherapy in the newborn: An overview, Washington (DC), USA: National academy of sciences, 1974, pp. 34 – 55.
    Retrieved from: https://www.nap.edu/read/20078/chapter/1;
    Retrieved on: Jun. 24, 2018
  39. D. A. Lightner, D. C. Crandall, “Biliverdin photo-oxidation. In vitro formation of methylvinylmaleimide,” FEBS Lett., vol. 20, no. 1, pp. 53 – 56, Jun. 1972.
    PMid: 11946380



Yu. P. Chukova

Pages: 220–224

DOI: 10.21175/RadProc.2018.46

Radioactivity is perceived as the most terrible danger by regular people. Radioactivity has always been studied in such aspect. Therefore, the occurrence of messages about the useful effects of a weak influence of radioactivity has caused counteraction and has generated the debate lasting till this moment. Thermodynamics is capable of bringing clarity to this problem. Else, in the 19th century, thermodynamics discovered two types of interactions of the system with the environment. In one case, the volume and entropy are constant in a system, and in the second one, the volume and temperature remain constant. The process in the second case is called an isothermal one and in the first case - a thermal one. Quantum thermodynamics was developed in the second half of the 20th century for electromagnetic radiation. It was shown that isothermal processes take place at weak influence on the system, and the thermal ones - at strong influences. Let us pay attention to the fact that the logarithmic scale for the absorbed energy is used for isothermal processes, and the linear scale is used for thermal processes. The logarithmic scale allows to uncover what is hidden in the zero point of thermal processes. In the previous reports of the author at RAD 2012, 2014, 2017 conferences, it was shown that quantum thermodynamics is valid for all three parts of radiation (α-, β- ,γ--radiation) and not only for γ-radiation. The application of the thermodynamic theory to hormesis effects allows us to provide a fresh insight on the essence of proceeding processes. For the experimenters who recorded a U-curve of a dose-effect dependence, it is useful to understand and remember that they study the identical answer of an organism which is a result of two fundamentally different processes: the left branch of the U-curve shows the end of the processes of a weak influence on an organism, and the right branch is the beginning of the effect of strong influences. Strong influences give a linear (or close to it) dose-effect dependence. They have been studied comprehensively and for a long time, and they are object of a hygienic standardization. Among the investigators studying strong influences, there is a different view on the threshold for a dangerous action: some consider dangerous even the smallest doses, and others reject any effects of doses below the threshold. Maybe they are excused by their ignorance of thermodynamics, especially if one is to consider that in thermodynamics there is no concept of harm. But if experimenters wish to deeply understand the essence of the processes they study, they should get acquainted with the general laws of quantum thermodynamics. Then, it would become clear to them why hormesis was found not only in radiobiology, but also in many other sciences. Hormesis is fixed by any experimenter working in a certain range of influences where the system changes the type of its answer to environmental influences (boundary of isothermal and thermal processes).
  1. T. D. Luckey, Hormesis with ionizing radiation, Boca Raton (FL), USA: CRC Press, 1980.
  2. Yu. P. Chukova, “Fundamental laws of efficiency of isothermal processes under ionizing and non-ionizing electromagnetic radiation,” in Proc. 1st Int. Conf. Radiation and Applications in Various Fields of Research (RAD 2012), Niš, Serbia, 2012, pp. 351 – 353.
    Retrieved from: http://www.rad-conference.org/helper/download.php?file=../pdf/Proceedings%20RAD%202012.pdf;
    Retrieved on: Apr. 23, 2018
  3. Yu. P. Chukova, “Radioactivity in the light of the fundamental law of physics,” in Proc. 5th Int. Conf. Radiation and Applications in Various Fields of Research (RAD 2017), Budva, Montenegro, 2017, pp. 260 – 264.
    Retrieved from: http://www.rad-proceedings.org/index.php?id=2;
    Retrieved on: Apr. 23, 2018
  4. Ю. П. Чукова, Закон Вебера – Фехнера, Москва, Россия: ЗАО МП Гигиена, 2009.(Yu. P. Chukova, The Weber – Fechner law,Moscow, Russia: ZAO MP Gigiena, 2009.)
  5. Ю. П. Чукова, Закон Девяткова (Эффективность нетеплового преобразования энергии длинноволнового электромагнитного излучения), Москва, Россия: Мегаполис, 2016. (Yu. P. Chukova, The Devyatkov law (Efficiency of nonthermal conversion of energy of long-wave electromagnetic radiation), Moscow, Russia: Megapolis, 2016.)
  6. Yu. P. Chukova, Advances in nonequilibrium thermodynamics of the systems under electromagnetic radiation, Moscow, Russia: Khrizostom, 2001.
  7. Ю. П. Чукова, Эффекты слабых воздействий. Термодинамический, экспериментальный (биологический и медицинский), социальный, законодательный, международный и философский аспекты проблемы, Москва, Россия: Алес, 2002. (Yu. P. Chukova, Low-level influence effects. Thermodynamic, experimental (medical and biological), social, Legislative, international and philosophical aspects of problem, Moscow, Russia: Ales, 2002.)
  8. E. B. Burlakova, “Features of the effect of ultra-low doses of biologically active materials and physical factors of low intensity,” Mendeleev Chemistry Journal, vol. 43, no. 5, pp. 1 – 12, 1999.
  9. Н. П. Пальмина, Е. Л. Мальцева, Е. И. Пынзарь, Е. Б. Бурлакова, “Модификация активности протеинкиназы С лигандами в сверхмалых концентрациях. Роль протеинкиназы С и её эффекторов в процессах пероксидного окисления,” Журнал Российского химического общества им. Д. И.Менделеева, т. 43, но. 5, стр. 55 – 63, 1999. (N. P. Palmina, E. L. Malzeva, E. I. Pynzar, E. B. Burlakova, “Modification of activity of protein kinase C with ligands in ultra-small concentration. The role of protein kinase C and its effectors in the peroxide oxidation processes,” Mendeleev Chemistry Journal vol. 43, no. 5, pp. 55 – 63, 1999.)
  10. Ю. П. Чукова, “Введение в квантовую термодинамику необратимых изотермических процессов,” Москва, Россия: Мегаполис, 2018. (Yu. P. Chukovа, “Introduction to quantum thermodynamics of nonequilibrium isothermal processes,” Moscow, Russia: Megapolis, 2018.)



Andjelka Hedrih, Katica (Stevanović) Hedrih

Pages: 225–230

DOI: 10.21175/RadProc.2018.47

The aim of this work is to study how different oscillatory behavior of centrosomes and their mass arrangement affect the kinetic energy of pairs of dyads of sister chromatids in the system of a mitotic spindle during metaphase. The analyses are done through a biomechanical oscillatory model of the mitotic spindle. Analytical expressions for the kinetic energy of the oscillating dyads of sister chromatids are given for the case when the biomechanical system of the mitotic spindle is conservative, linear, and when it oscillates under external single frequency oscillation. Numerical analyses with some approximation for mouse chromosomes are done. Our numerical experiment reveals that the kinetic energy of the oscillating dyads of sister chromatids has an oscillatory character and is affected by the chromosomes’ mass distribution and the frequency of centrosome excitation. The difference in energy distribution regarding different centrosome oscillatory frequencies in the same cell and the mass chromosome distribution may carry additional epigenetic information and could be important for the process of cell differentiation.
  1. A. Weise et al., “Chromosomes in a genome-wise order: evidence for metaphase architecture,” Mol. Cytogenet., vol. 9, no. 36, pp. 1 – 11, Apr. 2016.
    DOI: 10.1186/s13039-016-0243-y
    PMid: 27123045
  2. E. A. Franklin, W. Z. Cande, “Nuclear Organization and Chromosome Segregation,” Plant Cell, vol. 11, no. 4, pp. 523 – 534, Apr. 1999.
    DOI: 10.1105/tpc.11.4.523
    PMid: 10213775
  3. V. Magidson et al., “The Spatial Arrangement of Chromosomes during Prometaphase Facilitates Spindle Assembly,” Cell, vol. 146, no. 4, pp. 555 – 567, Aug. 2011.
    DOI: 10.1016/j.cell.2011.07.012
    PMid: 21854981
    PMCid: PMC3291198
  4. A. N. Hedrih, K. Hedrih, “Resonance as potential mechanism for homolog chromosomes separation trough biomechanical oscillatory model of mitotic spindle,” in Proc. 6th Int. Congress of Serbian Society of Mechanics, Mountain Tara, Serbia, 2017. pp. 1 – 10.
    Retrieved from: https://www.researchgate.net/publication/318113047_Resonance_as_potential_mechanism_for_homologue_chromosomes_ separation_trough_biomechanical_oscillatory_model_of_mitotic_spindle;
    Retrieved on: Jun. 3, 2018
  5. I. V. Maly, “Systems biomechanics of centrosome positioning A conserved complexity,” Commun. Integr. Biol., vol. 4, no. 2, pp. 230 – 235, Mar. 2011.
    DOI: 10.4161/cib.4.2.14548
    PMid: 21655449
    PMCid: PMC3104588
  6. I. Gasic, P. Nerurkar, P. Meraldi, “Centrosome age regulates kinetochore–microtubule stability and biases chromosome mis-segregation,” Elife, vol. 4, pp. 1 – 15, Aug. 2015.
    DOI: 10.7554/eLife.07909
    PMid: 26287477
    PMCid: PMC4579388
  7. M. Ueda, R. Graf, H. K. Macwilliams, M. Schliwa, U. Euteneuer, “Centrosome positioning and directionality of cell movements,” PNAS, vol. 94, no. 18, pp. 9674 – 9678, Sep. 1997.
    DOI: 10.1073/pnas.94.18.9674
    PMid: 9275182
  8. P. T. Conduit, “The dominant force of Centrobin in centrosome asymmetry,” Nat. Cell. Biol., vol. 15, no. 3, pp. 235 – 237, Mar. 2013.
    DOI: 10.1038/ncb2704
    PMid: 23449145
  9. A. Hedrih, “Relation between centrosome excitation and oscillatory energy of mitotic spindle in metaphase trough biomechanical oscillatory model of mitotic spindle” in Book of Abstr. 4th Int. Seminar “Nonlinear Phenomenology Advances”, Saint Petersburg, Russia, 2017.
  10. Hedrih, K. Hedrih. “Influence of mass chromosome distribution in equatorial plane on oscillatory energy of mitotic spindle trough biomechanical oscillatory model of mitotic spindle,” in 14th Int. Conf. Dynamical Systems – Theory and Applications (DSTA 2017), Lodz, Poland, 2017.
    Retrieved from: https://www.dys-ta.com/abs_view?pkey=agxzfmR5cy10YS1ocmRyEgsSBVBhcGVyGICAgKC-q4kJDA;
    Retrieved on: Jun. 3, 2018
  11. Д. Рашковић, Теорија осцилација, 3. изд, Београд, Србија: Грађевинска књига, 1974. (D. Rašković, Theory of oscillations, 3rd ed., Belgrade, Serbia: Građevinska knjiga, 1974.)
    Retrieved from: https://www.scribd.com/document/165759261/Teorija-Oscilacija-D-Raskovic;
    Retrieved on: Jun. 3, 2018
  12. А. А. Андронов, А. А. Витт, С. Э. Хайкин, Теория колебаний, Москва, Россия: Наука, 1981. (A. A. Andronov, A. A. Witt, S. E. Khaikin, Theory of oscillations, Moscow, Russia: Nauka, 1981.)
  13. K. Hedrih, “Dynamics of coupled systems,” Nonlinear Analysis: Hybrid Systems, vol. 2, no. 2, pp. 310 – 334, Jun. 2008.
    DOI: 10.1016/j.nahs.2006.06.003
  14. G. L. Ortega, A. Stoholski, R. C. Mellors, J. Hlinka, “Chromosomal mass in germinal cells and in cancer cells of the mouse,” Exp. Cell. Res., vol. 12, no. 3, pp. 560 – 567, Jun. 1957.
    DOI: 10.1016/0014-4827(57)90171-4
  15. B. Houchmandzadeh, J. F. Marko, D. Chatenay, A. Libchaber, “Elasticity and structure of eukaryote chromosomes studied by micromanipulation and micropipette aspiration,” J. Cell. Biol., vol. 139, no. 1, pp. 1 – 12, Oct. 1997.
    DOI: 10.1083/jcb.139.1.1
    PMid: 9314524
    PMCid: PMC2139812
  16. A. Kis, S. Kasas, A. J. Kulik, S. Catsicas, L. Forró, “Temperature-dependent elasticity of microtubules,” Langmuir, vol. 24, no. 12, pp. 6176 – 6181, Jun. 2008.
    DOI: 10.1021/la800438q
    PMid: 18494514
  17. I. V. Maly, Systems Biomechanics of the Cell, New York (NY), USA: Springer, 2013.
    DOI: 10.1007/978-1-4614-6883-7
  18. R. Milo, R. Phillips, “Concentrations and absolute numbers,” in Cell Biology by the Numbers, New York (NY), USA: Taylor & Francis Group, 2016. ch 2. sec. 2, pp. 87 – 128.
  19. R. J. Kuhn, M. Poenie, “Dynamic polarization of the microtubule cytoskeleton during CTL-mediated killing,” Immunity, vol. 16, no. 1, pp. 111 – 121, Jan. 2002.
    DOI: 10.1016/S1074-7613(02)00262-5
  20. S. Riche et al., “Evolutionary comparisons reveal a positional switch for spindle pole oscillations in Caenorhabditis embryos,” J. Cell. Biol., vol. 201, no. 5, pp. 653 – 662, May 2013.
    DOI: 10.1083/jcb.201210110
    PMid: 23690175
  21. D. Delaunay, V. Cortay, D. Patti, K. Knoblauch, C. Dehay, “Mitotic spindle asymmetry: aWnt/PCP-regulated mechanism generating asymmetrical division I ncortical precursors,” Cell Rep., vol. 6, no. 2, pp. 400 – 414, Jan. 2014.
    DOI: 10.1016/j.celrep.2013.12.026
    PMid: 24412369
  22. G. Civelekoglu-Scholey, D. Cimini, “Modelling chromosome dynamics in mitosis: a historical perspective on models of metaphase and anaphase in eukaryotic cells,” Interface Focus, vol. 4, no. 3,20130073, Jun. 2014.
    DOI: 10.1098/rsfs.2013.0073
    PMid: 24904736
    PMCid: PMC3996585
  23. A. Iakovliev, S. Dasmahapatra, A. Bhaskar, “Stability of mitotic spindle using computational mechanics,” unpublished.

Other topics


Vesna Dimova, Mirjana S. Jankulovska, Milena Jankulovska

Pages: 231–235

DOI: 10.21175/RadProc.2018.48

The molecular conformations and electronic properties of a set of five N1-(o/p-substituted phenyl)aminomethyl-1,2,4-triazole derivatives (PhAMT) were investigated by two semiempirical methods: AM1 and PM3. Characteristic bond lengths (N1-C2, C2-H6, C2-N3, N3-N4, N4-C5, C5-H7 and N1 - C5), angles (N1-C2-N3, C2-N3-N4, N3-N4-C5, N4-C5-N1 and C5-N1-C2) and atomic charges (N1, C2, N3, N4, C5, H6 and H7) for 1,2,4-triazole core were calculated and discussed in accordance with literature data for similar 1,2,4-triazole compounds. The EHOMO and ELUMO values, total energies, the heats of formation and dipole moments values were calculated, as well. The discussion was performed in accordance with the type and position of a substituent present in the aromatic core.

  1. S. Maddila et al., “1,2,4-Triazoles: A Review of Synthetic Approaches and the Biological Activity,” Lett. Organic Chem., vol. 10, no. 10, pp. 693 – 714, 2013.
    DOI: 10.2174/157017861010131126115448
  2. K. Ali et al., “Short review on 1, 2, 4-Triazole with various pharmacological activity,” SD Int. J. Pharm. Sci., vol. 1, no. 1, pp. 14 – 22, Jan. 2018.
    Retrieved from: http://www.sdijps.com/rc_images/sdijps1_1_14_22pdf.pdf;
    Retrieved on: Jul. 23, 2018
  3. R. Singh et al., “Design and Synthesis of New Bioactive 1,2,4-Triazoles, Potential Antitubercular and Antimicrobial Agents,” Indian J. Pharm. Sci.,vol. 80, no. 1, pp. 36 – 45, 2018.
    DOI: 10.4172/pharmaceutical-sciences.1000328
  4. N. Jaiprakash et al., “Synthesis, Antifungal Activity, and Docking Study of Some New 1,2,4-triazole Analogs,” Chem. Biol. Drug Design, vol. 78, no. 5, pp. 800 – 809, Nov. 2011.
    DOI: 10.1111/j.1747-0285.2011.01178.x
  5. H. Sadeghpour et al., “Design, Synthesis, and Biological Activity of New Triazole and Nitro-Triazole Derivatives as Antifungal Agents,” Molecules, vol. 22, no. 7, 1150, Jul. 2017.
    DOI: org/10.3390/molecules22071150
  6. A. Usman Rasheed et al., “ADME/T Prediction, Molecular Docking, and Biological Screening of 1,2,4-Triazoles as Potential Antifungal Agents,” J. Appl. Bioinform. Computat. Biol., vol. 7, no. 1, Jan. 2018.
    DOI: 10.4172/2329-9533.1000144
  7. M. Lazarevi et al., “Synthesis of some N 1 – Aryl/heteroarylaminomethyl/ethyl-1,2,4-triazoles and their antibacterial and antifungal activities,” Heterocycl. Commun., vol. 7, no. 1, pp. 577 – 582,
    May 2001.
    DOI: org/10.1515/HC.2001.7.6.577
  8. HyperChem(TM) Professional 7.51, Hypercube, Inc., Gainesville (FL), USA, 2018.
    Retrieved from: http://www.hyper.com/;
    Retrieved on: Jul. 23, 2018
  9. M. J. S. Dewar et al., “Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model,” J. Am. Chem. Soc., vol. 107, no. 13, pp. 3902 – 3909, Jun, 1985.
    DOI: 10.1021/ja00299a024
  10. J. J. P. Stewart, “Optimization of parameters for semiempirical methods I. Method,” J. Computat. Chem., vol. 10, no. 2, pp. 209 – 220, Mar. 1989.
    DOI: org/10.1002/jcc.540100208
  11. R. D. Johnson III, NIST Computational Chemistry Comparison and Benchmark Database: NIST Standard Reference Database Number 101, Release 19, National Institute of Standard and Technology, Gaithersburg (MD), USA, 2018.
    Retrieved from: http://cccbdb.nist.gov/
    Retrieved on: Dec. 12, 2017
  12. L. Xiao-Hong et al., “Quantum chemical studies on the structure and performance properties of 2,5,2`-triazido-1,1`-azo-1,3,4-triazole,” Indian J. Chem. Sec. A, vol. 53A, no. 3, pp. 281 – 287, Mar. 2014.
    Retrieved from: http://nopr.niscair.res.in/handle/123456789/27394;
    Retrieved on: Apr. 23, 2018
  13. J. L. Escobar-Valderrama et al., “Crystal, molecular and electronic structure of 1-H-3-methyl-4-amine-5-thione-1,2,4-triazol,” Can. J. Chem., vol. 67, no. 2, pp. 198 – 201, Feb. 1989.
    DOI: org/10.1139/v89-033
  14. I. A. Adejoro et al, “Quantum Descriptors and Corrosion Inhibition Potentials of Amodaquine and Nivaquine,” Chem. Sci. J., vol. 8, no. 1, 149, Jan. 2017.
    DOI: 10.4172/2150-3494.1000149
  15. A. A. Ikizler et al., “A Quantum-Chemical Investigation on 5,5`-BI(1H-1.2,4-Triazole),” Turk. J. of Chem., vol. 21, no. 4, pp. 353 – 362, 1997.
    Retrieved from: http://journals.tubitak.gov.tr/chem/issues/kim-97-21-4/kim-21-4-16-97056.pdf;
    Retrieved on: Apr. 23, 2018
  16. Z. Rui-Zhou et al., “Theoretical studies on a series of 1,2,4-triazoles derivatives as potential high energy density compounds”, J. Chem. Sci., vol. 124, no. 5, pp. 995 – 1006, Sep. 2012.
    DOI: 10.1007/s12039-012-0304-7


B. Papajanı, E. Vataj, A.V. Hasımı, A. Sınanaj

Pages: 236–240

DOI: 10.21175/RadProc.2018.49

In this study, the influence of additives used during the recycling process, to the crystallinity of LDPE was analyzed. The usage of LDPE recycled is growing, as well as other types of recycled plastics, due to its flexibility and other properties. The spectroscopic method of infrared vibration is used for microstructure analysis of the samples. The presence of low-intensity peaks to infrared spectrum at 1300-800 cm-1 for all samples indicates the presence of additives. The additives used in the recycled polymers influence their degree of crystallinity that is closely linked with their physical and mechanical properties. Due to the different rates of crystallinity the samples show different intensities of peak at 726 cm-1. XRD techniques are used to calculate the degree of crystallinity and to study the phase compound of recycled LDPE. Rutile’s and calcite’s peak were identified by diffractgrams analyses as the additives added in the recycled LDPE.
  1. M. Chanda, S. K. Roy, Industrial polymers, specialty polymers and they applications, 4th ed., Boca Raton (FL), USA: Taylor &Francis, 2007.
    DOI: 10.1201/9781420080599
  2. Y. Zare, “Recycled Polymers: Properties and Applications,” in Recycled Polymers: Properties and Applications, vol. 2, V. K. Thakur, Ed., Shrewsbury, UK: Smithers Rapra, 2015.
    Retrieved from: https://www.smithersrapra.com/SmithersRapra/media/Sample-Chapters/Recycled-Polymers-Properties-and-Applications,-Volume-2.pdf;
    Retrieved on: Apr. 23, 2018
  3. S. Krimm, C. Y. Liang,G. B. B. M. Sutherland, “Infrared Spectra of High Polymers. II. Polyethylene,” J. Chem. Phys., vol. 25, no. 3, 549, 1956.
    DOI: 10.1063/1.1742963
  4. J. Coates, “Interpretation of Infrared Spectra, A Practical Approach,” in Encyclopedia of Analytical Chemistry, Chichester, UK: John Wiley & Sons, 2000, pp. 10815 – 10837.
    DOI: 10.1002/9780470027318
  5. L. E. Alexander, X-Ray Diffraction Methods in Polymer Science, New York (NY), USA: John Wiley and Sons, 1969.
  6. V. Hauk, “Structural And Residual Stress Analysis By X-Ray Diffraction On Polymeric Materials And Composites,” Advances In X-Ray Analysis, vol. 42, pp. 540 – 554, 2000.
    Retrieved from: https://pdfs.semanticscholar.org/19f7/7d2aa7b5eeb512f09142566d30f4c968b1ec.pdf;
    Retrieved on: Apr. 23, 2018
  7. J. Florestan, A. Lachambre, N. Mermilliod, J. C. Boulou, C. Marfi, “Recycling of plastics: Automatic identification of polymers by spectroscopic methods,” Resour. Conserv. Recycl., vol. 10, no. 1-2, pp. 67 – 74, Apr. 1994.
    DOI: 10.1016/0921-3449(94)90039-6
  8. N. J. Everall, J. M. Chalmers, P. R. Griffiths, Vibrational Spectroscopy of Polymers: Principles and Practice,Chichester, UK: John Wiley & Sons Ltd, 2007.
  9. C. Klein, C. S. Hurlbut, Manual of Mineralogy, 20th ed., New York (NY), USA: John Wiley and Sons, 1985.
  10. F. P. La Mantia, “Plastics Additives,” in Recycled plastics: additives and their effects on properties, London, UK: Chapman and Hall, 1998, ch. 59, pp 535 – 543.
    DOI: 10.1007/978-94-011-5862-6_59